
Computer Networks 79 (2015) 283–296
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Designing efficient high performance server-centric data center
network architecture
http://dx.doi.org/10.1016/j.comnet.2015.01.006
1389-1286/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: twangah@cse.ust.hk (T. Wang), zsuab@cse.ust.hk (Z.

Su), rainsia@cse.ust.hk (Y. Xia), muppala@cse.ust.hk (J. Muppala), ham-
di@cse.ust.hk (M. Hamdi).
Ting Wang ⇑, Zhiyang Su, Yu Xia, Jogesh Muppala, Mounir Hamdi
Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
a r t i c l e i n f o

Article history:
Received 28 August 2014
Received in revised form 26 December 2014
Accepted 13 January 2015
Available online 29 January 2015

Keywords:
Data center network
Network topology
Interconnection architecture
Server-centric
Flat network
a b s t r a c t

Data center network (DCN) architecture is regarded as one of the most important determi-
nants of network performance. As the most typical representatives of DCN architecture
designs, the server-centric scheme stands out due to its good performance in various
aspects. In this paper, we firstly present the design, implementation and evaluation of
SprintNet, a novel server-centric network architecture for data centers. SprintNet achieves
high performance in network capacity, fault tolerance, and network latency. SprintNet is
also a scalable, yet low-diameter network architecture where the maximum shortest dis-
tance between any pair of servers can be limited by no more than four and is independent
of the number of layers. The specially designed routing schemes for SprintNet strengthen its
merits. However, all of these kind of server-centric architectures still suffer from some crit-
ical shortcomings owing to the server’s responsibility of forwarding packets. With regard
to these issues, in this paper, we then propose a hardware based approach, named ‘‘For-
warding Unit’’ to provide an effective solution to these drawbacks and improve the effi-
ciency of server-centric architectures. Both theoretical analysis and simulations are
conducted to evaluate the overall performance of SprintNet and the Forwarding Unit
approach with respect to cost-effectiveness, fault-tolerance, system latency, packet loss
ratio, aggregate bottleneck throughput, and average path length. The evaluation results
convince the feasibility and good performance of both SprintNet and Forwarding Unit.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Data centers, implemented as an agglomeration of mas-
sive number of servers, are increasingly playing an impor-
tant role in supporting enterprise computing needs, cloud
computing services (such as web search, email, online
gaming, and social networking) and infrastructure-based
services (like GFS [9], BigTable [6], MapReduce [7], Dryad
[14], etc.). With data availability and security at stake,
the role of the data center is more critical than ever. To
support the growing cloud computing needs, the number
of servers in today’s data centers are increasing exponen-
tially, thus resulting in enormous challenges to network
design for interconnecting these servers. As a result, sev-
eral novel proposals, such as Fat Tree [3], DCell [12], BCube
[11], VL2 [10], FiConn [15], Portland [20], FlatNet [17],
HyperBcube [16], NovaCube [24], CamCube [2] and
Small-World [22] have been proposed aiming to efficiently
interconnect the servers inside a data center to deliver
peak performance to users. The data center architecture
is regarded as the most important factor, since it not only
determines the reliability of a data center, but also plays
a dominate role in network capacity, fault tolerance,
latency, and routing efficiency. Generally, the design goals

284 T. Wang et al. / Computer Networks 79 (2015) 283–296
of data center networks are high scalability, good fault tol-
erance, low latency and high network capacity [23,12,19].

Scalability: In order to meet the increasing demands for
services and better performance, the physical structure
must have good scalability enabling incremental expan-
sion without affecting the existing servers. Correspond-
ingly, the routing algorithm should also be scalable and
easily adapt to the new expanded interconnection.

Fault tolerance: A fault-tolerant architecture allows
the system to continue with its current task even in the
presence of failures. From the perspective of the network
design, good fault tolerance can be achieved through
redundant physical connections and fault-tolerant routing
schemes. However, the richly connected network may be
confronted with a high wiring complexity, where a satis-
factory compromise should be made.

Latency: Primarily the network latency consists of the
queuing delay at each hop, transmission delay and propa-
gation delay, of which the buffer queuing at each hop is the
major contributor to latency. Therefore, a smaller network
diameter, which leads to lowering the latency should be
offered as a basic feature of the network design enabling
the data center to provide faster services. Besides, the
design of traffic-aware routing algorithm or deadline-
aware transport protocol also help reducing the overall
latency.

Network capacity: Large-scale data centers providing
cloud services are usually bandwidth hungry. Hence, the
data center should provide high network capacity to sup-
port the high volumes of traffic generated by many online
infrastructure services, such as GFS [9] and MapReduce [7].

Aiming to meet these challenging design goals, in this
paper, we propose a novel server-centric data center net-
work architecture named SprintNet, which is recursively
defined with rich connectivity, exhibits good fault toler-
ance and scalability. Furthermore, the diameter of Sprint-
Net can be limited within four, which implies potentially
low network latency. Moreover, SprintNet also demon-
strates high performance in terms of bisection bandwidth
and aggregate bottleneck throughput.

Compared with other architectures (e.g. switch-centric
architecture), the server-centric network scheme stands
out owing to its own many superiorities. Firstly, the
level-based and recursively defined architectures are more
likely to achieve a good scalability and easier to design a
large-scale DCN (e.g. DCell scales double exponentially
and FlatNet scales at O(n3) with only 2 layers of network
using n-port switches). Secondly, it achieves better perfor-
mance in aggregate throughput and average packet delay
for small sized network [5]. Thirdly, the server-centric
architectures are more cost-effective than other candidates
(e.g. Fat Tree) [21]. Fourthly, it holds good fault-tolerance
because of numerous node-disjointed paths [12,11,19].
Lastly but not least, it only uses cheaper low-end commod-
ity switches without any modifications to them.

Although the server-centric scheme receives numerous
highlights, there still exist many practical issues which are
enumerated in Section 5. In responding to these issues, this
paper then provides an effective approach which can solve
these shortcomings and improve the efficiency of server-
centric architectures including SprintNet.
The primary contributions of this paper can be summa-
rized as follows:

(1) A new high performance server-centric architecture
SprintNet enjoying four major desirable features for
data center networks is proposed.

(2) Theoretical analysis of typical features of SprintNet
and a comprehensive comparison with other
proposals from various aspects.

(3) Design of two routing schemes for SprintNet taking
some practical issues into consideration.

(4) Address the critical shortcomings which exist and
need to be solved in server-centric data center net-
work architectures.

(5) Propose a hardware based approach to achieve a log-
ically flat DCN and solve the issues of server-centric
architectures.

(6) Conduct extensive simulations to evaluate the
performance of SprintNet and the feasibility of the
hardware based approach.

The rest of the paper is organized as follows. First we
briefly review the related research literature in Section 2.
Then Section 3 introduces the SprintNet structure in detail.
Subsequently, the routing schemes designed for SprintNet
are described in Section 4. Afterwards, Section 5 addresses
the existing drawbacks of server-centric architectures fol-
lowed by Section 6 which illustrates the hardware based
solution to these drawbacks. Section 7 demonstrates the
evaluations of SprintNet and forwarding unit. Finally, Sec-
tion 8 concludes the paper.
2. Related work

Considerable research has been conducted in finding a
suitable interconnection architecture for data center net-
works. The proposed data center architectures so far can
be generally classified into two categories: server-centric
and switch-centric. Unlike switch-centric scheme which
places the interconnection and routing intelligence on
switches, the server-centric scheme expects the servers
also to forward packets. The server-centric architectures
well implement the network locality forming the servers
in close proximity of each other, which can help increase
the communication efficiency. DCell [12], BCube [11],
FiConn [15], FlatNet [17], CamCube [2], Small-World [22]
and NovaCube [24] are examples of server-centric architec-
tures. The switch-centric architectures are typically con-
structed around top of rack (ToR) switches, which are
then interconnected through one or more higher levels of
switches (such as aggregation level and core level). Fat
Tree [3], Portland [20], and VL2 [10] are some typical rep-
resentatives of switch-centric architectures.
2.1. Switch-centric architecture

Fat Tree [3] is a three-layer Clos network built in the
form of multi-rooted tree. It is a rearrangeably non-block-
ing structure, which provides an oversubscription ratio of
1:1 to all servers. A Fat Tree built with n-port switches

T. Wang et al. / Computer Networks 79 (2015) 283–296 285
has n pods, each of which contain two layers of n/2
switches. It consists of (n/2)2 core switches, n2/2 aggrega-
tion and n2/2 edge switches respectively, and supports
n3/4 servers in total. However, the wiring complexity is
O(n3) which is a serious challenge.

Portland [20] is a scalable, easily manageable, fault-
tolerant, and efficient layer 2 Ethernet-compatible routing,
forwarding and address resolution protocol for data center
environments. It uses a pre-determined Fat-Tree topology,
hierarchical pseudo-MAC (PMAC) address, and logically
centralized directory (Fabric Manager) to resolve PMAC
to actual MAC (AMAC) addresses to enable Ethernet-com-
patible plug-n-play networking. Besides, based on multi-
rooted Fat-Tree architecture, it exploits the knowledge of
the underlying topology of a data center, and completely
avoids broadcast-based mechanisms, and stresses on fast
and easy virtual machine mobility within the data center.

VL2 [10] is an agile and cost effective network architec-
ture, which is built from numerous switches arranged into
a Clos topology. VL2 employs Valiant Load Balancing (VLB)
to spread traffic across network paths, and uses address
resolution to support large server pools. Besides, VL2
applies flat addressing to eliminate fragmentation of
resources and allow any service to be assigned to any ser-
ver anywhere in the data center. However, the centralized
directory system may become a bottleneck in the case of
heavy network load.

2.2. Server-centric architecture

DCell [12] uses servers with multiple ports and low-end
mini-switches to build its recursively defined architecture.
In DCell, the most basic element named DCell0 consists of n
servers and one n-port switch. Each server in a DCell0 is
connected to the switch in the same DCell0. Generally,
DCellk (i.e. level-k DCell) is created by tk-1+1 DCellk-1s,
where tk-1 is the number of servers in each DCellk-1. The
node degree of each server in a DCellk is k + 1, and the
level-i link connects to a different DCelli�1 within the same
DCelli. DCell scales out at a double exponential speed, and
its fault-tolerant DFR routing protocol which introduces
local-reroute achieves good results. However, the lower
level links carry more traffic causing higher link utilization,
thus may become a bottleneck and result in low aggregate
bottleneck throughput.

BCube [11] is also a recursively defined structure, which
is specially designed for shipping container based modular
data centers. Its most basic element BCube0 is the same as
DCell0 : n servers connect to one n-port switch. While con-
structing a BCube1;n extra switches are used, connecting
to exactly one server in each BCube0. More generally,
BCubek is derived from n BCubek-1s and nk n-port COTS
switches. Different from DCell, the servers in BCube only
connect to switches without connecting other servers.
BCube accelerates 1-to-n traffic patterns and also demon-
strates a good network capacity for all-to-all network traf-
fic. However, BCube is deficient in scalability with
relatively high wiring complexity.

FiConn [15] shares similar design principle as DCell. The
difference is that the degree of each server in FiConn is
always two while in DCell it is k + 1. Likewise, a high-level
FiConn is derived from number of low-level FiConns. And
the routing algorithm in FiConn is traffic-aware which
can help it in utilizing the link capacities referring to traffic
states, resulting in a good aggregate throughput. However,
the fault tolerance and network capacity in FiConn are not
so good. Besides, the average path length is relatively long.

FlatNet [17] is a 2-layer server-centric architecture,
which scales at a speed of n3. Briefly, the first-layer of Flat-
Net consists of n servers which connect to one n-port
switch. And the second-layer of FlatNet is constructed by
n2 1-layer FlatNets. Different subsystems (1-layer Cells)
are interconnected to each other using extra n2 n-port
switches.

Another special server-centric architecture proposed by
researchers with great novelty is to directly connect serv-
ers to other servers. This is a switchless network intercon-
nection without any switches, routers, or other network
devices. CamCube [2], Small-World [22] and NovaCube
[24], which are built based on a regular pattern, for exam-
ple cube and torus, can be classified into this category. The
CamCube is designed targeting at shipping container-sized
data centers. With the benefit of Torus architecture and the
flexibility offered by CamCube API, it allows applications to
implement their own routing protocols so as to achieve
better application-level performance. However, this kind
of design consistently suffers from poor routing efficiency
compared to other designs and this was mainly due to
the relatively long routing paths, for example, the network
diameter in 3D torus is OðN1=3Þ hops within a N-server
sized network.
3. SprintNet network structure

In this section, we firstly describe the SprintNet archi-
tecture that interconnects commodity switches and serv-
ers in line with server-centric scheme, and then present
its key properties.
3.1. SprintNet physical structure

SprintNet is recursively constructed, where a high-level
SprintNet is built from a certain number of lower-level
SprintNets. The basic building unit is named Cell (or 0-
layer), which is the building block to construct a larger
SprintNet. Each Cell is constructed with c n-port switches,
where c

cþ1 n ports of each switch connect to c
cþ1 n servers

and 1
cþ1 n ports for inter-Cell connections. Accordingly, each

Cell contains c n-port switches and c
cþ1 n servers. All the

switches and servers are fully-connected.
The 1-layer SprintNet consists of c

cþ1 nþ 1 Cells, and sup-

ports ð c
cþ1Þ

2n2 þ c
cþ1 n servers in total. Each server has c þ 1

ports, c ports of which connect to c switches inner Cell
and one port is used for inter-Cell connection which con-
nects to a switch in another Cell.

The higher k-layer SprintNet is constructed by adding
c

cþ1 n Cells each time and fully connected to each other in
the same way. There will be k� cn

cþkþ 1 different Cells. cn
cþk

ports of each n-port switch connect to cn
cþk servers within

286 T. Wang et al. / Computer Networks 79 (2015) 283–296
a Cell, and kn
cþk ports interconnects different Cells. As a result,

a k-layer SprintNet can support k� ð c
cþkÞ

2n2 þ c
cþk n servers.

Fig. 1 shows an example of a 20-server SprintNet con-
structed by using 6-port switches when c ¼ 2;n ¼ 6 and
k ¼ 1. Each Cell is composed of 2 switches and 4 servers.

3.2. Properties of SprintNet

In this subsection, some typical features of SprintNet are
explored and analyzed. The analysis of the structural prop-
erties of SprintNet are summarized in Table 1, which also
present comparisons with other network architectures
from different aspects.

3.2.1. Network diameter
The diameter indicates the maximum shortest path

length (denoted by the number of links) among all the ser-
ver pairs. Compared with other architecture proposals as
shown in Table 1, SprintNet achieves a lower network
diameter. The physical interconnection of SprintNet deter-
mines the path length between any two servers within a
Cell is 2, and the distance between any pair of servers in
different Cells is 2 or 4. Therefore, the network diameter
of SprintNet can be restricted by 4, which is a constant
number. Comparatively, the network diameters of other
architectures are much higher, some of which (e.g. DCell,
BCube) increase accordingly as the number of layers
increases (limited by the port numbers on switches, a lar-
ger sized network usually needs more layers to scale up),
as shown in Fig. 2.

Furthermore, SprintNet has another competitive edge
derived from its low network diameter – the potential
low network latency, where smaller diameter leads to
more effective routing with smaller number of hops and
Cell 0

[3,0]
[3,1]

[3,2]
[3,3]

[2,1]
[2,2]

[2,3]

[1,0]
[1,1]

[0,0] [0,1] [0,2] [0,3]

Fig. 1. A 20-server SprintNet using tw
lower queuing delay (buffering at each hop), and also
lower transmission latency in practice [19].

3.2.2. Scalability and physical cost
For a 2-layer architecture, as shown in Table 1, SprintNet

achieves scalability of Oðn2Þwhich is the same as DCell and
BCube. The wiring complexity of SprintNet is slightly higher
than DCell and BCube though they are all at the same level
of Oðn2Þ. However, this is still better than Fat Tree, VL2 and
FlatNet, whose wiring complexity is Oðn3Þ. Additionally,
the number of switches used in SprintNet depends on the
value of c and increases at the speed of OðnÞ which also
outperforms Fat Tree, VL2 and FlatNet.

Thus, to sum up the above analysis, though the scalabil-
ity and link complexity of SprintNet are not superior to the
best competitors, yet still can be acceptable.

3.2.3. Bisection bandwidth
The bisection bandwidth is depicted as the sum of link

capacities between two equally-sized parts which the net-
work is partitioned into. It can be used to measure the
worst-case network capacity [8].

The bisection bandwidth of SprintNet is c2n2

2ðcþ1Þ2
þ cn,

which is around two times that of DCell’s. Moreover, it
can be seen from Table 1 that the bisection bandwidth
per server also outperforms the other candidates.

3.2.4. Network capacity
The aggregate bottleneck throughput (ABT) can be used

to measure the overall network capacity of an architecture
under the all-to-all traffic pattern, where every server
communicates with all other servers. For each server,
among all of its flows on different routes, the flows with
Structure Unit: Cell

server switch

[2,0]

[1,2]
[1,3]

o 6-port switches in each cell.

Table 1
The comparison between different network architectures.

Fat tree (3 layers) VL2 (3 layers) DCell (2 layers) BCube (2 layers) FlatNet (2 layers) SprintNet (2
layers)

Number of servers n3

4
ðn�2Þn2

4
nðnþ 1Þ n2 n3 ð c

cþ1Þ
2n2 þ c

cþ1 n

Number of links 3n3

4
ðnþ2Þn2

4
3nðnþ1Þ

2
2n2 2n3 c2n2

cþ1 þ cn

Per server 3 nþ2
n�2

3
2

2 2 P2

Number of switches 5n2

4
3n
2 þ n2

4
nþ 1 2n 2n2 c2

cþ1 nþ c
Per server 5

n
nþ6

n2�2n
1
n

2
n

2
n

cþ1
n

Bisection bandwidth n3

8
n2

4
n2

4 þ n
2

n2

2
n3

4
c2n2

2ðcþ1Þ2
þ cn

Per server 1
2

1
n�2 � 1

4
1
2

1
4

1
2þ

ð2cþ1Þðcþ1Þ
2ðcnþcþ1Þ

Network diameter 6 6 5 4 8 4
Number of node-disjointed

paths
0 0 2 2 2 c þ 1ðP 2Þ

0 1 2 3 4
0

4

8

20

24

28

32

36

40

44

48

N
et
w
or
k
D
ia
m
et
er
(li
nk
-c
ou
nt
ba
se
d)

Number of Layers (k)

SprintNet
DCell / FiConn
Fat Tree / VL2
BCube

DCell&FiConn: 3*2k-1

BCube:2*(k+1)

FatTree&VL2: 6

SprintNet: 4

Fig. 2. The network diameters of various architectures with different
layers.

T. Wang et al. / Computer Networks 79 (2015) 283–296 287
the smallest throughput are named as bottleneck flows.
ABT indicates the sum of the throughputs of all the bottle-
neck flows.

ABT performs very sensitive to the average path length
(APL). Assume that the overall network capacity is NClinks

(the sum of all link capacities), if we use NCPABT to denote
the proportion of the overall network capacity that the
aggregate bottleneck throughput can reach (i.e. ABT

NClinks
)

under the all-to-all traffic pattern, then we can derive
that

NCPABT ¼
1

APL
ð1Þ

assuming that the bandwidth of each link in one-way com-
munication is 1 and all the links are equal in SprintNet.

Proof. Define Nflows as the total number of flows in the
network, Nlinks indicates the total number of two-way
communication links (so there are actually 2Nlinks virtual
one-way communication links), and NFlink represents the
number of flows carried on one link (thus 1

NFlink
indicates the

throughput that per flow receives), then we have:
ABT ¼ Nflows �
1

NFlink
ð2Þ

NFlink ¼
Nflows � APL

2Nlinks
ð3Þ

Combining Eq. (2) and (3), we have:

ABT ¼ 2Nlinks

APL
ð4Þ

Hence, when the link capacity is 1, there is

NCPABT ¼
ABT

NClinks
¼ ABT

2Nlinks
¼ 1

APL
ð5Þ

which concludes the proof. h

This further theoretically proves that SprintNet’s low
network diameter and low average path length enable
SprintNet in achieving a high network capacity.

3.2.5. Fault tolerance
Benefitting from the specially designed interconnection

with rich physical connections, SprintNet achieves good
fault tolerance. As shown in Table 1, compared with an
architecture with two layers, SprintNet has c þ 1 (c P 1)
parallel node-disjoint paths, which is better than DCell
and BCube, while Fat Tree has no node-disjoint paths.
Apart from the sufficient physical connections, the fault
tolerant routing scheme designed in Section 4 further
strengthens the reliability of SprintNet.

3.2.6. Incremental expansion
SprintNet can be easily expanded by adding cn

cþ1 Cells

each time which account for ð cn
cþ1Þ

2 more servers. Besides,
SprintNet is a highly symmetric architecture, hence missing
one or more Cells of servers does not degrade the perfor-
mance of the system much, and the remaining Cells are still
fully connected.

3.3. Towards a cost-effective structure

As described above, the total number of servers
depends on n and c. If given a certain number of servers,
a larger c implies better fault tolerance and smaller n, but
at the cost of more switches. If considering the cost of
the device, high-port-count (larger n) switches are more

288 T. Wang et al. / Computer Networks 79 (2015) 283–296
expensive than low-port-count ones , but a larger n leads
to less switches (e.g. supporting 24 servers in each Cell
should use two 36-port switches or only one 48-port
switch). In order to find the most beneficial c and n so as
to make a reasonable trade-off between the cost of
switches and fault tolerance, we formulate this problem
into an optimization model as below (for simplicity, with-
out loss of generality, we consider the case of SprintNet
with two layers).

Objective : Minimize f ðc;nÞ ¼ CostðswitchesÞ
FT

ð6Þ

Subject to:

CostðswitchesÞ ¼ Nswitch � Pricen�port�switch ð7Þ

¼ c2

c þ 1
� nþ c

� �
� Pricen�port�switch ð8Þ

FT ¼ c þ 1 ð9Þ
c

c þ 1

� �2

� n2 þ c
c þ 1

� n ¼ Nserver ð10Þ

where CostðswitchesÞ denotes the total cost of switches, FT
means fault tolerance indicating the number of parallel
node-disjointed paths, Nswitch is defined as the total number
of switches, Pricen�port�switch gives the price of a n-port
switch, and Nserver represents the total number of servers
the network can support.

The goal is to achieve as high fault tolerance as possible
with the minimum cost of switches, which leads to a min-
imal ratio f ðc;nÞ. The solution to Eq. (6) is provided as
follows:

CostðswitchesÞ
FT

¼
ð c2

cþ1 � nþ cÞ � Pricen�port�switch

c þ 1

¼ c2

ðc þ 1Þ2
� nþ c

c þ 1

 !
� Pricen�port�switch

¼ c2

ðc þ 1Þ2
� n2 þ c

c þ 1
� n

 !
� Pricen�port�switch

n

¼ Nserver �
Pricen�port�switch

n

Given a certain Nserver sized network, the Pricen�port�switch is
exponential or in direct proportion to n, so we can compute
the most cost-effective n based on the actual prices of the
devices, and further obtain the corresponding c, where

c ¼
ffi
4Nserver þ 1
p

� 1
2n�

ffi
4Nserver þ 1
p

þ 1
:

This provides a satisfactory trade-off between cost and
reliability to construct a cost-effective Nserver sized
SprintNet.
Table 2
Routing path length distribution.

Route Route0 Route1 Rout

Path length 2 2 2
4. Routing in SprintNet

This section presents specially designed routing algo-
rithms for SprintNet, which aim to help SprintNet achieve
its maximum theoretical performance.

4.1. Naïve routing scheme

The naïve routing scheme (NRS) is a shortest path rout-
ing algorithm. It is required to compute the shortest paths
for all the servers to every destination and store the rout-
ing table on each node. A node may use broadcasting or
flooding based technique to compute the routing table, or
it may resort to the already existing protocols, such as
the OSPF (Open Shortest Path First) protocol.

The principle of the broadcasting-based method is sim-
ple. Primarily, each server only keeps the connectivity sta-
tus of its neighbor servers. In order to compute the shortest
routing path from server a to server b, starting from server
a the broadcasting is recursively carried out in each step in
the network. When the broadcasting packet arrives at ser-
ver b, then it retraces back to server a along the reverse
path reaching b. In this way, multiple paths between server
a and b may be obtained, then the route with the shortest
length will be chosen as the final routing path and stored in
the routing table at server b. When there is more than one
shortest path, the route will be chosen at random from the
candidate routes, which can positively contribute to the
load balancing of the system to some extent. The routing
tables can be pre-computed and then in the future used
directly at the complexity of Oð1Þ.

In order to avoid ceaseless broadcasting packets in an
endless loop and thus reduce the network workload, in
the implementation of NRS each broadcasting packet is
attached with a counter TTL to denote its maximum life-
span (the number of hops). Once the counter exceeds the
predetermined threshold, the broadcasting packet is dis-
carded. Since the network diameter of SprintNet is 4, which
means the maximum shortest path length will not be lar-
ger than 4, hence we conservatively set the lifespan coun-
ter to 5 as default.

Although this routing scheme is simple in implementa-
tion and can achieve the optimal shortest path, there are
some implicit shortcomings. On the one hand, the broad-
casting increases the network workload resulting in addi-
tional bandwidth cost. On the other hand, the size of the
routing table stored on each node is linear to the size of
the data center, which may become a heavy burden for
the limited memory resource and TCAM. Finally, naïve
routing is not traffic-aware and the routing decisions are
made without regard to the network state. This may lead
to poor link utilization and even congestion. With response
to these issues, we propose the Traffic-aware Adaptive
Routing scheme.
e2 Route3 Route4 Route5

4 4 4

T. Wang et al. / Computer Networks 79 (2015) 283–296 289
Algorithm 1. Traffic-aware Adaptive Routing: TAR(src,
dst)

if src:failðÞkdst:failðÞ then
return null;

else
if s1 == d1 then

return Route0: src! switch x! dst;
else

if src == n && dst!= m && j:onðÞ then
return Route1: src ! switch j! dst;

else if src!= n && dst == m && i:onðÞ then
return Route2: src ! switch i! dst;

else if src == n && dst == m then
if linkðsrc; iÞ.abw > linkðsrc; jÞ.abw then

return Route1;
else

return Route2;
end if

else
if i:onð Þ && j:onð Þ && m:onð Þ &&n:onð Þ then

Route3: src! switchi! m! switch y! dst;
Route4: src! switchx! n! switch j! dst;
return Route3 or Route4 at random;

else if ði:failð Þkm:failð ÞÞ && n:onð Þ && j:onð Þ
then

return Route4;
else if ðn:failð Þkj:failð ÞÞ && i:onð Þ && m:onð Þ
then

return Route3;
else if ði:failð Þkm:failð ÞÞ && ðn:failð Þkj:failð ÞÞ
then

return Route5: src! intermediate Cellt ! dst;
end if

end if
end if

end if
4.2. Traffic-aware adaptive routing scheme

The traffic-aware adaptive routing (TAR) is a custom-
ized fault tolerant routing scheme for SprintNet, also based
on shortest path routing. TAR takes the network state into
consideration when making routing decisions so as to
avoid network congestion and achieve good load balanc-
ing. Moreover, TAR scheme follows the way of flow-based
single path routing which does not divide flows among
multiple paths for the sake of avoiding packet reordering.

In the TAR scheme, each server is identified using two
coordinates (cid; sid), which indicates the sid-th server in
the cid-th Cell. Given a pair of servers src½s1; s2� and
dst½d1; d2�, a route between them with the path length of
two or four can be computed according to Algorithm 1.

The whole routing procedure can be generally divided
into two cases as shown in the pseudocode of Algorithm
1. Firstly, if the source src½s1; s2� and destination dst½d1; d2�
are located in the same Cell (s1=d1), then they can directly
reach each other via any switch within the Cell. In addition,
switch x whose link connecting to server src has the most
available bandwidth is preferentially selected. From
another perspective, when a switch or port fails, its link
bandwidth can be regarded as zero, so the traffic can be
routed by other switches to handle network faults. Sec-
ondly, src and dst are placed in two different Cells: Cells1

and Celld1 . There are four situations for this case. We
assume that switch i of Cells1 connects to server
m½m1;m2� of Celld1 , and server n½n1;n2� of Cells1 connects
to switch j of Celld1 . The first situation is that src is right
the server n, then the traffic will traverse the path Route1:
src! switchj! dst. When switch j fails, it takes Route3:
src! switchi! m! switchy! dst instead to circumnavi-
gate the fault, where y is satisfied that link ðm; yÞ has the
most available bandwidth. If even switch i also fails, then
it will firstly route to the switch, which connects to src,
of an intermediate Cellt then finally transfer to dst. The sec-
ond situation is that the destination server dst is just the
server m, and as described in Algorithm 1 its routing strat-
egy is similar to the first situation. The third situation hap-
pens when src ¼ n and at the same time dst ¼ m, then we
will choose the route with the most available bandwidth
from Route1 and Route2 aiming to avoid network conges-
tion and achieve lowest latency. The last situation mainly
deals with the faulty cases when src – n and dst – m. If
all the interconnection points (i.e. switch i; j and server
m;n) connecting the Cells1 and Celld1 are available, then
the algorithm chooses Route3 or Route4 at random trying
to contribute to load balancing. If in case one endpoint of
the interconnection link ði;mÞ fails, then Route4 will be
picked as the alternative route. Similarly, Route3 will be
selected for the case of link ðn; jÞ failure. The worst case
is that all the interconnection points i; j;m; n become
unavailable, in this case the traffic will be rerouted to the
destination via an intermediate Cellt .

Following the above procedures strictly, the traffic will
be forwarded along the shortest path with the most avail-
able bandwidth and be fault tolerant. The statistics of path
length distribution for all the TAR routing cases are sum-
marized as in Table 2, which reveals that theoretically in
any case the distance between any pair of servers in a
SprintNet can be restricted within four. By comparison,
the maximum path lengths of Ficonnk and BCubek are

2 � 3k � 1 and 2kþ 2 respectively, which are much longer
than SprintNet. Therefore, SprintNet is a comparatively
low-diameter network.

5. Issues of the server-centric scheme

The computational servers in server-centric architec-
tures are not only running regular applications but also
acting as switches to relay the traffic in the system. Though
this brings numerous advantages and convenience, it is
also accompanied by several critical drawbacks:

(1) The network becomes not transparent to servers.
Besides, servers cannot be independent of the network,
and in some cases of routings, server’s intervention is
needed.

(2) The Operating System kernel or the network proto-
col of a server has to be modified to implement the auto-

290 T. Wang et al. / Computer Networks 79 (2015) 283–296
matic fault-tolerant routing and flow-level load-balancing.
Specifically, the OS must be able to detect current network
status (e.g. connectivity, variation of delay, etc.) and dis-
cover feasible alternative routing paths in real-time. More-
over, certain routing protocol (e.g. source routing scheme)
must be implemented in order to allow a single flow trans-
fer through multiple paths simultaneously. However, mod-
ifying the OS kernel could be very complicated and time-
consuming in practice (e.g. DCell involves more than
13,000 lines of C code [12]).

(3) The server may become the bottleneck of overall
network performance and leads to additional packet
delays, increased packet loss ratio and deceased aggregate
bottleneck throughput, especially when suffering from
insufficient software resources, e.g. CPU time and memory
bandwidth [12], and servers cannot completely focus on
computing and providing regular services.

(4) A certain number of NICs are needed to be installed
on each server to meet the future scaling out, which may
be not very practical since most of current data center
servers only have two built-in ports.

(5) It is difficult to implement a Green Data Center since
servers cannot be powered off even though they are idle
for computing because they still undertake forwarding
tasks.

All of the above issues are caused mainly due to putting
the servers onto the network side and enabling them to
forward packets. Based on this careful observation, in Sec-
tion 6 we put forward a hard-ware based approach against
these issues.
6. Approach to improve the performance of server-
centric scheme

The forwarding tasks of servers in DCell and BCube are
software implemented, where they use software for packet
forwarding which relies too much on CPU, and the CPU
becomes the major bottleneck hindering the system to
achieve all potential capacity gains according to their
experimental results. As noted in [11,12], the researchers
also expect (not implemented) to use a specially-designed
network card in the server in future so that server can exe-
A Server: A Server:

Fig. 3. Shifting forwarding task fro
cute the forwarding without the involvement of CPU. To
some extent this design can reduce the forwarding delay,
however, it cannot make the data center network com-
pletely transparent to servers. And in the cases of fault-tol-
erant routings, it still needs server’s intervention.

In order to totally overcome the drawbacks addressed
above, intuitively the most beneficial way is to shift the
forwarding/routing tasks from a server to the network
completely which makes servers independent from the
network. In view of the above, we propose an efficient
hardware-based approach by introducing a dedicated
hardware named ‘‘Forwarding Unit’’. The basic idea under
this approach is as illustrated in Fig. 3. The forwarding unit
isolates the server from the network completely and oper-
ates as a middleware. In other words, this forwarding unit
is totally responsible for the forwarding tasks and the ser-
ver does not relay the traffic any more and thus no longer
cares about the network status. Relieving the CPU from the
forwarding work, the server only focuses on computing
and its CPU resources can be saved to achieve a better per-
formance of services. Furthermore, from the perspective of
users, the entire data center network can be simply
regarded as a giant switch as shown in Fig. 3 (right), and
the architecture is then reduced down to a logical single-
layer data center network in a high level view.

In order to better illustrate the design of forwarding
unit, without loss of generality we take a two-layered
SprintNet as the representative of server-centric architec-
tures. Fig. 4 shows the internal structure of a forwarding
unit which is specially designed for SprintNet. For a certain
given node in SprintNet, there are at most c

cþ1 nþ 1 possibil-
ities of routing path (because each layer contains only

c
cþ1 nþ 1 subsystems), and each node has only up to
3 � c

cþ1 n� 1 choices for one hop (because each node can
reach 3 � c

cþ1 n� 1 nodes in one hop via one switch), hence
a route table with the size of only ð c

cþ1 nþ 1Þlog2

ð3 � c
cþ1 n� 1Þ bits can describe its routing behaviors. There-

fore, for a SprintNet with 9312 servers where
n ¼ 128; c ¼ 3, the route table stored in the forwarding
unit is just 99 bytes which implies a very small hardware
cost. This provides the possibility that all the route tables
can be pre-calculated and be stored in the forwarding units
Data Center
Network

(as a giant switch)

server

m a server to the network.

st nd
st nd

* The content of the is pre-calculated and customized for each
individual server according to its loca�on in a SprintNet.

Fig. 4. The internal structure of a forwarding unit.

T. Wang et al. / Computer Networks 79 (2015) 283–296 291
in advance, and then in the future be used directly at the
complexity of Oð1Þ, which can save much time cost in com-
puting routing paths. In this way, the system behaves more
effectively without wasting time in calculating the route
tables before determining a path and avoids the high net-
work overhead brought by broadcasting path-probing
packets. Under the circumstances of fault-tolerance or net-
work virtualization, we can offline calculate the routing
strategies, and then make appropriate corresponding con-
figurations to the forwarding units.

Moreover, this forwarding unit based approach which
shifts the control of routing/forwarding from servers to
the network is also in line with the principle of current
trend of Software Defined Network. The system can adopt
OpenFlow-like technology to achieve a global configura-
tion and management for the routing behaviors. The con-
troller can be an independent server or hosted on a
compute server. In order to deal with the single point fail-
ure of the controller, multiple controllers can be used,
where these controller have different roles: OFPCR_RO-
LE_EQUAL, OFPCR_ROLE_MASTER, and OFPCR_ROLE_-
SLAVE (as specified in [1]) to guarantee the robustness of
the system. The forwarding unit should be Openflow
enabled by installing flow tables and group tables so as
to implement the pipeline processing. The controller-to-
switch messages (such as feature messages, switch config-
uration messages, flow table configuration messages, mod-
ify-state messages, read-state messages, packet-out,
barrier message, and role request messages), asynchronous
messages (OFPT_PACKET_IN, OFPT_FLOW_REMOVED,
OFPT_PORT_STATUS, and OFPT_ERROR_MSG) and sym-
metric messages (Hello messages, Echo messages and
Experimenter messages) can be transmitted through
Openflow secure channel either in band or out of band.
With the help of Openflow technology, the system can gain
a better flow scheduling in data center networks, and can
better realize the network virtualization as well. Besides,
against the shortcomings that the routing paths in ser-
ver-centric architectures are comparatively long and mul-
tiple additional forwarding actions are needed, the
OpenFlow-like technology is much easier to manage them
globally which can further improve the system’s flexibility.

Additionally, following this scheme the entire data cen-
ter network can be designed as a whole, and its internal
routing is simplified, for example, there is no need to con-
sider the case of server failures. The complex cabling
within the data center network can be directly imple-
mented on the PCB or with the help of a dedicated physical
port which makes the deployment simplified. And the sys-
tem becomes more reliable.

The common problem of adopting openflow technology
is that the extra latency (such as round-trip time and route
computing time) incurred by interaction between the for-
warding unit and the controller even though such latency
is acceptable for elephant flows.

Concluding from the above analysis and discussions, on
the one hand the forwarding unit is a hardware-based
implementation approach which logically flattens the data
center network and makes the internal network work as a
logical giant switch. On the other hand, it provides an effi-
cient way to improve the performance of server-centric
architectures. Additionally, it follows the core idea of soft-
ware defined network, but without changing the switch,
and it also gives full consideration on the hardware’s cost
problem of forwarding unit (more in subSection 7.3).
7. Evaluation

In this section, extensive simulations are conducted to
evaluate the performance of SprintNet and forwarding unit
approach under various network conditions using the TAR
routing scheme.
7.1. Simulation overview

All simulations are conducted using our DCNSim [18]
simulator, which can simulate several data center network
topologies (such as DCell, FatTree, BCube, FlatNet, and
HyperBCube) and compute various metrics, such as
throughput, network latency, average path length, fault-
tolerance, and so on. We implement SprintNet architecture
and its traffic-aware routing algorithm in DCNSim to enable
conducting comprehensive evaluation. The all-to-all traffic
pattern, which simulates the most intensive network activ-
ities, is used to evaluate the guaranteed performance under
the most rigorous cases. Furthermore, according to the
findings in [4] about the characteristics of the packet-level
communications, the packet inter-arrival time reveals an
ON/OFF pattern and its distribution follows the Lognormal
mode for OFF phase, while the distribution varies between
Lognormal mode, Weibull mode and Exponential mode in
different data centers during the application-sensitive ON
phase. In our simulations, the Lognormal distribution mode
(directly using the Simjava package of eduni.simjava.distri-
butions [13]) is applied to determine the inter-arrival time
of packets. All the links are capable of bidirectional commu-
nications with 1 GBps unidirectional link bandwidth. The
packet size is set to be 1500 bytes which equals to the
default MTU of a link. Additionally, the default TTL of a
packet in TAR routing is set as 128.

Table 4
The statistics for the case of 1056-server SprintNet.

All-to-all traffic pattern & Uniform distribution flow mode

Flow statistics (4,257,792 flows
in total)

3,176,448 flows using 2112
level-0 links
1,081,344 flows using 1056
level-1 links

Route statistics (1,114,080
routes in total)

99,264 paths of length 2
1,014,816 paths of length 4

Average path length 3.82

Table 5
The ABT of 2352-server SprintNet and DCell.

ABT NClinks NCPABT (%) 1
APL (%)

All-to-all traffic pattern (2352-server network)
SprintNet 4762 18,816 25.31 1

3:88 ¼ 25:77
DCell 1213 7056 17.19 1

4:86 ¼ 20:58

292 T. Wang et al. / Computer Networks 79 (2015) 283–296
7.2. Evaluation of SprintNet

This subsection presents the simulation results of the
SprintNet evaluation. In order to better illustrate the overall
performance of this architecture, the simulations are con-
ducted from the following four aspects.

7.2.1. Average path length
In order to evaluate the overall performance of the

whole network, the link-count based average path length
(APL) is used, where APL has a great impact on packet
delay. Table 3 demonstrates the simulation results about
APL for eight different sized 2-layer SprintNets and DCells.
And Table 4 illustrates the detailed statistics of flows and
routes for the case of 1056-server SprintNet. It can be seen
from Table 3 that SprintNet owns shorter APL comparing
with DCell regardless of the network size. Besides, the
experiment also reveals that the APL varies slightly for dif-
ferent sizes of SprintNet, and in general a larger sized
SprintNet holds longer APLs.

7.2.2. Aggregate bottleneck throughput
As illustrated in Eq. (1) in Section 3.2, the aggregate bot-

tleneck throughput ABT is inversely proportion to the aver-
age path length APL (i.e. NCPABT ¼ 1

APL). Table 5 presents the
experimental results of ABT for 2353-server SprintNet and
DCell under all-to-all traffic pattern. The result shows that
SprintNet achieves both higher ABT and NCPABT than DCell.
Take SprintNet for example, as shown in Table 5, the Nlinks of
a 2353-server SprintNet is 9408, hence its NClinks is
9408⁄2 = 18,816 (two-way communication). Given the
APL of a 2352-server SprintNet is 3.88, its ABT reaches
4762, therefore its NCPABT ¼ 4762

18;816 ¼ 25:31%, which is
already very close to its theoretical limit
(1

APL ¼ 1
3:88 ¼ 25:77%). This reveals the good performance

of the SprintNet in the aggregate bottleneck throughput.

7.2.3. Speedup of the first layer
Like other server-centric proposals, in SprintNet, the

network traffic burden carried on different layers differs.
According to the simulation results as shown in Table 4,
the level-0 links undertake higher network loads which
results in a higher link utilization rate. This careful obser-
vation reveals that the first layer is more likely to occur
Table 3
The average path length statistics.

Network size-number of servers Average path length

SprintNet

20 (ns ¼ 6, c = 2, nd ¼ 4) 2.95
72 (ns ¼ 12, c = 2, nd ¼ 8) 3.38
156 (ns ¼ 18, c = 2, nd ¼ 12) 3.56
272 (ns ¼ 24, c = 2, nd ¼ 16) 3.66
600 (ns ¼ 30, c = 2, nd ¼ 24) 3.77
1056 (ns ¼ 48, c = 2, nd ¼ 32) 3.82
1332 (ns ¼ 48, c = 3, nd ¼ 36) 3.84
2352 (ns ¼ 64, c = 3, nd ¼ 48) 3.88

⁄ns and c denote the number of ns-port switches per Cell in SprintNet is c.
nd indicates nd-port switch used in DCell.
network congestion and become the system’s bottleneck.
Fig. 5 presents the simulation results for three different
sized SprintNet with different speedup factors using TAR
and NRS routing schemes, which exhibits that the aggre-
gate bottleneck throughput can be further improved with
certain speedup of first layer. Another intuitive finding,
which can be derived from Fig. 5, is that NRS scheme
obtains slightly higher ABT than TAR scheme mainly due
to the induced higher extra network load by NRS. Accord-
ing to the evaluation results, the most beneficial speedup
factor to the first layer network is suggested as 1.3�1.5,
which leads to a more cost-effective data center network.

7.2.4. Network reliability
Figs. 6 and 7 demonstrate the performance of a 1056-

sever SprintNet in ABT and APL under various faulty condi-
tions applying the Traffic-aware Adaptive Routing scheme.
Although the ABT degrades as the failure rate increases, as
shown in Fig. 6, the network still achieves 86.5%, 87.9%,
and 89.3% of the fault-free ABT (failure rate = 0%) when
the switch/server/link failure rate reaches 10% respec-
tively. The ABT decreases most for the switch failure case,
where its ABT reduces to 1260.98 for 10% failure rate. How-
Diameter

DCell SprintNet DCell

3.68 4 5
4.25 4 5
4.48 4 5
4.60 4 5
4.72 4 5
4.79 4 5
4.81 4 5
4.86 4 5

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
830

840

850

860

870

880

890

900

910

920

930

940

950

960

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1440

1460

1480

1500

1520

1540

1560

1580

1600

1620

1640

1660

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
4740

4750

4760

4770

4780

4790

4800

4810

4820

4830

4840

4850

4860

Ag
gr
eg
at
e
Bo
ttl
en
ec
k
Th
ro
ug
hp
ut

Speedup of the First Layer

600-server using TAR
600-server using NRS

Ag
gr
eg
at
e
Bo
ttl
en
ec
k
Th
ro
ug
hp
ut

Speedup of the First Layer

1056-server using TAR
1056-server using NRS

Ag
gr
eg
at
e
Bo
ttl
en
ec
k
Th
ro
ug
hp
ut

Speedup of the First Layer

2352-server using TAR
2352-server using NRS

Fig. 5. The ABT performance of different sized SprintNet with various lower layer speedup factors.

0 1 2 3 4 5 6 7 8 9 10
1225

1250

1275

1300

1325

1350

1375

1400

1425

1450

1475

A
gg
re
ga
te
B
ot
tle
ne
ck
Th
ro
ug
hp
ut
(A
ll-
to
-A
ll)

Failure Rate (%)

Server Failure Only
Switch Failure Only
Link Failure Only

Fig. 6. The ABT performance of a 1056-server SprintNet under faulty
conditions with TAR routing scheme.

0 1 2 3 4 5 6 7 8 9 10
3.8216

3.8218

3.8220

3.8222

3.8224

A
ve
ra
ge
P
at
h
Le
ng
th

Switch Failure Rate (%)

Average Path Length

Fig. 7. The APL performance of a 1056-server SprintNet under faulty
conditions with the TAR routing scheme.

T. Wang et al. / Computer Networks 79 (2015) 283–296 293
ever, its NCPABT still reaches 19.9% (ABT
NClinks

¼ 1260:98
2�3168 ¼ 19:9%),

which is even better than the DCell of its fault-free case
(the ABT for 1056-server fault-free DCell is 553.40, so there
is NCPABT ¼ ABT

NClinks
¼ 553:40

2�1584 ¼ 17:5%). This further convinces

the theoretical analysis about the good performance of
SprintNet in ABT.
The simulation results illustrated in Fig. 7 reveal that
the APL varies slightly and remains almost the same under
different switch failure rates. For example, the APL under a
fault-free condition is 3.8218, and increases very little as
the failure rate increases. The peak value 3.8222 appears
in the 10% switch failure rate case, which only increases
by 0.01% compared with the fault-free case.

7.3. Evaluation of forwarding unit

In this subsection, the performance of forwarding unit
based approach is evaluated from various aspects under
different network conditions using TAR routing scheme.

7.3.1. System latency
Precisely the network latency consists of the queuing

delay at each hop, transmission delay and propagation
delay. In order to actually evaluate the overall packet delay
of the network, we use the global packet lifetime (the time
from packet’s generation to the arrival at its destination) to
measure the system latency. Fig. 8 illustrates the perfor-
mance of average global packet lifetime (in millisecond)
in different sized SprintNet networks. In this experiment,
the buffer size of forwarding unit is set to 10 MTU (1
MTU = 1500 bytes) by default. It is clearly can be seen that
13%–20% reduction of the network latency is feasible when
applying forwarding units, and larger sized network
achieves a larger latency reduction. This reveals that the
forwarding unit based approach can contribute much to
the network latency.

7.3.2. Aggregate bottleneck throughput
As described and proved in Section 3.2, ABT is used to

evaluate the maximum sustainable throughput over the
entire network under the all-to-all traffic pattern.

The evaluation of ABT is conducted on a 1056-server
SprintNet using two 48-port switches in each Cell, which
has 3168 physical links. Table 6 gives the simulation
results of ABT and APL. Given the APL = 3.82, the SprintNet
applying forwarding unit achieves ABT of 1560.21, which
reaches as high as 24.625% of the overall network capacity
and is actually very close to the theoretical limitation (1/
3.82 = 26.178%). Compared with the original SprintNet, for-
warding unit improves the throughput by 1560:21�1457:11

1457:11

¼ 7:08%. Clearly, the SprintNet applying forwarding unit

72 272 600 10561332 2352 6480

7

8

9

10

11

12

13

14
A
ve
ra
ge
G
lo
ba
lP
ac
ke
tL
ife
tim
e
(m
s)

Number of Servers

Original SprintNet
SprintNet applying Forwarding Unit

Fig. 8. The comparison of the system performance in network latency.

Table 6
The performance of ABT in a 1056-server SprintNet.

Original SprintNet SprintNet applying forwarding unit

1056-server SprintNet, APL = 3.82
ABT 1457.11 1560.21
PABT (%) 1457:11

2�3168 ¼ 22:997 1560:21
2�3168 ¼ 24:625

1
APL (%) 26.178 26.178

1400

1450

1500

1550
ttl
en
ec
k
Th
ro
ug
hp
ut

Switch Failure Only
Switch Failure Only (Forwarding Unit)
Link Failure Only
Link Failure Only (Forwarding Unit)

294 T. Wang et al. / Computer Networks 79 (2015) 283–296
achieves a much better performance in ABT than the origi-
nal SprintNet.
0 1 2 3 4 5 6 7 8 9 10
1200

1250

1300

1350

A
gg
re
ga
te
B
o

Failure Rate (%)

Fig. 9. The performance of ABT under faulty conditions in a 1056-server
SprintNet running with forwarding units.
7.3.3. Hardware cost and average packet loss ratio
Table 7 presents the cost of hardware implementation

and system’s performance in the average packet loss ratio.
As illustrated in the table, the hardware cost is very low,
for instance, for a 9312-server sized data center the size
of route table stored in each forwarding unit is less than
0.1 KB. Besides, the system demonstrates a favorable per-
formance in controlling traffic congestion and packet loss.
The average packet loss ratio keeps at a very low level
Table 7
Hardware cost and system performance.

n & c Forwarding units Route table size (byte

n = 12, c = 3 90 5.88

n = 24, c = 3 342 13.60

n = 48, c = 3 1332 31.18

n = 64, c = 3 2352 43.85

n = 128, c = 3 9312 99.00

⁄n denotes the number of ports on switches.
c indicates the number of switches per Cell.
which is no more than 0.02% (under the Lognormal flow
distribution mode), and there is a certain decrease when
the buffer size increases.
7.3.4. Fault tolerance
The fault tolerance mainly depends on the network

architecture (like redundant physical connections) and
the fault tolerant routing schemes. The network devices
(e.g. switch, router) and links occurring failures greatly
degrades the network performance (such as ABT, APL, rout-
ing connection success ratio). In the server-centric archi-
tectures, the server failures also greatly affect the
network performance since servers are also considered as
the routers in the system. However, the forwarding unit
based approach which isolates the servers from the net-
work completely has no need to consider the case of server
failures any more when designing the fault tolerant rout-
ing scheme.

Figs. 9 and 10 exhibit the performance of ABT and con-
nection failure ratios in case of link failures and switch fail-
s) Buffer size (MTU) Avg. packet loss ratio (%)

10 0.0176
15 0.0162
20 0.0125

10 0.0180
15 0.0169
20 0.0138

10 0.0189
15 0.0176
20 0.0143

10 0.0192
15 0.0181
20 0.0149

10 0.0198
15 0.0186
20 0.0153

0 1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
on
ne
ct
io
n
Fa
ilu
re
R
at
io
n
(%
)

Failure Ratio (%)

Link Failure Only
Switch Failure Only

Fig. 10. The performance of fault tolerance under faulty conditions in a
1056-server SprintNet running with forwarding units.

T. Wang et al. / Computer Networks 79 (2015) 283–296 295
ures in a 1056-server SprintNet applying forwarding units.
Although the system yields a gradually decayed network
performance as the failure rate increases, the measured
results still largely outweigh the original SprintNet. For
example, the ABT in case of 10% switch failure rate is
achieved as 1341.19, while the original SprintNet only
obtains 1260.98 ABT for the same case, which indicates a
much better improvement in ABT after introducing for-
warding units. Moreover, the results shown in Fig. 10
reveal that the system holds an upper bound of connection
failure ratio, i.e. if the link/switch failure rate is f then the
connection failure ratio of whole system will not exceed
f/2. All of these results reflect the good performance in fault
tolerance.

8. Conclusion

In this paper we firstly proposed SprintNet, a novel ser-
ver-centric architecture for data centers, and presented its
design, analysis and evaluations. SprintNet is highlighted
by its low diameter, high bisection bandwidth, good fault
tolerance, and high aggregate bottleneck throughput. The
specially designed traffic-aware adaptive and fault tolerant
routing scheme helps SprintNet achieve its maximum the-
oretical performance. The implementation and evaluation
of SprintNet further strengthens the theoretical analysis
and demonstrates its feasibility. Furthermore, based on
careful investigations we addressed some critical short-
comings existed in the server-centric data center architec-
tures caused by depending on servers to forward packets.
In order to efficiently solve these drawbacks, we proposed
an elegant approach which shifts forwarding tasks from
servers to the network aiming to achieve a logically flat
data center network. The forwarding unit totally isolates
the servers from the network, and makes the data center
network completely transparent to servers which brings
abundant of advantages. In order to evaluate the feasibility
and performance of this approach, extensive simulations
are conducted, and the evaluation results convince its effi-
ciency and feasibility.
References

[1] Openflow switch specification v1.3.0, 2012.
[2] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea,

Austin Donnelly, Symbiotic routing in future data centers, ACM
SIGCOMM Comput. Commun. Rev. 40 (4) (2010) 51–62.

[3] Mohammad Al-Fares, Alexander Loukissas, Amin Vahdat, A scalable,
commodity data center network architecture, ACM SIGCOMM
Computer Communication Review, vol. 38, ACM, 2008, pp. 63–74.

[4] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of
data centers in the wild, in: Proceedings of the 10th Annual
Conference on Internet Measurement, ACM, 2010, pp. 267–280.

[5] Kashif Bilal, Samee U. Khan, Limin Zhang, Hongxiang Li, Khizar
Hayat, Sajjad A. Madani, Nasro Min-Allah, Lizhe Wang, Dan Chen,
Majid Iqbal, et al., Quantitative comparisons of the state-of-the-art
data center architecture, Concurrency and Computation: Practice
and Experience, 2012.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah
A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E.
Gruber, Bigtable: a distributed storage system for structured data,
ACM Trans. Comput. Syst. (TOCS) 26 (2) (2008) 4.

[7] Jeffrey Dean, Sanjay Ghemawat, Mapreduce: simplified data
processing on large clusters, Commun. ACM 51 (1) (2008) 107–113.

[8] Nathan Farrington, Erik Rubow, Amin Vahdat, Data center switch
architecture in the age of merchant silicon, in: 17th IEEE Symposium
on High Performance Interconnects, 2009 (HOTI 2009), IEEE, 2009,
pp. 93–102.

[9] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, The Google file
system, SIGOPS Oper. Syst. Rev. 37 (5) (2003) 29–43.

[10] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen
Patel, Sudipta Sengupta, Vl2: a scalable and flexible data center
network, ACM SIGCOMM Computer Communication Review, vol. 39,
ACM, 2009, pp. 51–62.

[11] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang,
Yunfeng Shi, Chen Tian, Yongguang Zhang, Songwu Lu, Bcube: a high
performance, server-centric network architecture for modular data
centers, ACM SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 63–
74.

[12] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang,
Songwu Lu, Dcell: a scalable and fault-tolerant network structure for
data centers, ACM SIGCOMM Computer Communication Review, vol.
38, ACM, 2008, pp. 75–86.

[13] F. Howell, R. McNab, SimJava: a discrete event simulation library for
java, Simul. Ser. 30 (1998) 51–56.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly,
Dryad: distributed data-parallel programs from sequential building
blocks, ACM SIGOPS Oper. Syst. Rev. 41 (3) (2007) 59–72.

[15] Dan Li, Chuanxiong Guo, Haitao Wu, Kun Tan, Yongguang Zhang,
Songwu Lu, Ficonn: using backup port for server interconnection in
data centers, in: INFOCOM 2009, IEEE, IEEE, 2009, pp. 2276–2285.

[16] D. Lin, Y. Liu, Mounir. Hamdi, Jogesh Muppala, HyperBCube: A
Scalable Data Center Network, IEEE ICC, 2012.

[17] Dong Lin, Yang Liu, Mounir Hamdi, Jogesh Muppala, Flatnet: towards
a flatter data center network, in: Global Communications Conference
(GLOBECOM), 2012 IEEE, IEEE, 2012, pp. 2499–2504.

[18] Y. Liu, J. Muppala, DCNSim: a data center network simulator, in:
ICDCSW, IEEE, 2013.

[19] Yang Liu, Jogesh Muppla, Malathi Veeraraghavan, Dong Lin, Mounir
Hamdi, Data center networks, 2013. <http://www.amazon.ca/Data-
Center-Networks-Yang-Liu/dp/3319019481>.

[20] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington,
Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram
Subramanya, Amin Vahdat, Portland: a scalable fault-tolerant layer
2 data center network fabric, ACM SIGCOMM Computer
Communication Review, vol. 39, ACM, 2009, pp. 39–50.

[21] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, I. Stoica, A
cost comparison of datacenter network architectures, in:
Proceedings of the 6th International Conference, ACM, 2010, p. 16.

[22] Ji-Yong Shin, Bernard Wong, Emin Gün Sirer, Small-world
datacenters, in: Proceedings of the 2nd ACM Symposium on Cloud
Computing, ACM, 2011, p. 2.

[23] Ting Wang, Zhiyang Su, Y. Xia, M. Hamdi, Rethinking the data center
networking: architecture, network protocols, and resource sharing.

[24] T. Wang, Z. Su, Y. Xia, B. Quin, M. Hamdi, NovaCube: A Low Latency
Torus-Based Network Architecture for Data Centers, in: Global
Communications Conference (GLOBECOM), 2014 IEEE, IEEE, 2014.

296 T. Wang et al. / Computer Networks 79 (2015) 283–296
Ting Wang received his Bachelor Sci. degree
from University of Science and Technology
Beijing, China, in 2008, and received his
Master Eng. degree from Warsaw University
of Technology, Poland, in 2011. From 02.2012
to 08.2012 he interned as a research assistant
in the Institute of Computing Technology,
Chinese Academy of Sciences. He is currently
working towards the Ph.D. degree in Hong
Kong University of Science and Technology.
His research interests include data center
networks, cloud computing, green computing,

and software defined network.
Zhiyang Su received his B.E. degree in com-
puter science and technology from China
University of Geosciences (Beijing) in 2009,
and M.S. degree in computer network and
application from Peking University in 2012.
Currently, he is pursuing Ph.D. degrees in
Hong Kong University of Science and Tech-
nology. His research interests focus on soft-
ware defined networking (SDN) and data
center networking, especially on improving
the performance of SDN.
Yu Xia is currently a postdoctoral fellow in
Department of Computer Science and Engi-
neering, the Hong Kong University of Science
and Technology. He received the Ph.D. in
computer science from Southwest Jiaotong
University, China. He was a joint Ph.D student
and a visiting scholar at Polytechnic Institute
of New York University. His research interests
include high-performance packet switches,
data center networks and network architec-
tures.
Jogesh Muppala received the Ph.D. degree in
Electrical Engineering from Duke University,
Durham, NC in 1991, the M.S. degree in
Computer Engineering from The Center for
Advanced Computer Studies, University of
Southwestern Louisiana (now University of
Louisiana at Lafayette), Lafayette, LA in 1987
and the B.E. degree in Electronics and Com-
munication Engineering from Osmania Uni-
versity, Hyderabad, India in 1985. He is
currently an associate professor in the
Department of Computer Science and Engi-

neering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. He is also currently serving as the
program director for the Master of Science in Information Technology
(MSc(IT)) program. He also served as the Undergraduate Studies Director
in the Computer Science Department from August 1999 to August 2001,
and the Chair of Facilities Committee in the department from September
2005 to August 2007. He was previously a Member of the Technical Staff
at Software Productivity Consortium (Herndon, Virginia, USA) from 1991
to 1992, where he was involved in the development of modeling tech-
niques for systems and software. While at Duke University, he partici-
pated in the development of two modeling tools, the Stochastic Petri Net
Package (SPNP) and the symbolic Hierarchical Automated Reliability and
Performance Evaluator (SHARPE), both of which are being used in several
universities and industry in the USA. He co-founded the International
Workshop on Dependability of Clouds, Data Centers and Virtual Machine
Technology (DCDV). He was also the program co-chair for the 1999 Pacific
Rim International Symposium on Dependable Computing held in Hong
Kong in December 1999. He also co-founded and organized The 1st Asia–
Pacific Workshop on Embedded System Education and Research (APE-
SER). He has also served on program committees of many international
conferences.

Mounir Hamdi received the B.S. degree in
Electrical Engineering – Computer Engineer-
ing minor (with distinction) from the Uni-
versity of Louisiana in 1985, and the MS and
the PhD degrees in Electrical Engineering
from the University of Pitts-burgh in 1987 and
1991, respectively. He is a Chair Professor at
the Hong Kong University of Science and
Technology, and was the head of department
of computer science and engineering. Now he
is the Dean of the College of Science, Engi-
neering and Technology at the Hamad Bin

Khalifa University, Qatar. He is an IEEE Fellow for contributions to design
and analysis of high-speed packet switching. He is/was on the Editorial
Board of various prestigious journals and magazines including IEEE

Transactions on Communications, IEEE Communication Magazine, Com-
puter Networks, Wireless Communications and Mobile Computing, and
Parallel Computing as well as a guest editor of IEEE Communications
Magazine, guest editor-in-chief of two special issues of IEEE Journal on
Selected Areas of Communications, and a guest editor of Optical Networks
Magazine. He has chaired more than 20 international conferences and
workshops including The IEEE International High Performance Switching
and Routing Conference, the IEEE GLOBECOM/ICC Optical networking
workshop, the IEEE ICC High-speed Access Workshop, and the IEEE IPPS
HiNets Workshop, and has been on the program committees of more than
200 international conferences and workshops. He was the Chair of IEEE
Communications Society Technical Committee on Transmissions, Access
and Optical Systems, and Vice-Chair of the Optical Networking Technical
Committee, as well as member of the ComSoc technical activities council.
He received the best paper award at the IEEE International Conference on
Communications in 2009 and the IEEE International Conference on
Information and Networking in 1998. He also supervised the best PhD
paper award among all universities in Hong Kong.

