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a b s t r a c t 

Sketch-based measurement provides traffic data summary in a memory-efficient way with provable accu- 

racy bound. Recent advances in software defined networking facilitate the development and implemen- 

tation of sketch-based measurement applications. However, sketch-based measurement usually requires 

TCAMs and SRAMs which are precious resource in switch to match packet fields. The key challenge for 

sketch-based measurement is how to accept more concurrent measurement tasks with minimum re- 

source usage. Existing proposals attempt to achieve this goal by exploring different task assignment al- 

gorithms. We argue that by sacrificing a small amount of accuracy, the resource usage can be decreased 

dramatically. In this paper, we propose JOTA, a novel system to improve the performance of the task as- 

signment for sketch-based measurement. By considering both TCAM and SRAM capacities, we formulate 

the problem as a mixed integer nonlinear programming problem. Due to its high computational complex- 

ity, we divide the initial problem into two stages and develop a two-stage heuristic to efficiently produce 

task assignment. In particular, we present an algorithm which guarantees ( 1 + β) approximation ratio to 

solve the second stage task assignment. Extensive experiments with three different measurement tasks 

and real packet traces demonstrate that JOTA significantly reduces the resource usage and accepts 33% 

more tasks compared with the first fit approach. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Timely and accurate network traffic measurement is crucial in

etwork management. The network management tasks such as

raffic engineering, load balancing and anomaly detection rely on

he measurement results to take further actions. For example, traf-

c engineering finds better routes based on the real-time traffic

onitoring results. 

Recently, software defined networking (SDN) has emerged as an

ctive research field which attracted considerable attention from

oth academia and industry. SDN enables the programmability of

he network by decoupling the control plane and the data plane.

otivated by this, software defined measurement leverages the

exibility of SDN to implement many customized measurement

asks. Specifically, software defined measurement not only can dy-

amically tune measurement granularity, but also has the capabil-

ty to accommodate many advanced streaming algorithms to im-

lement complex measurement tasks such as sketch-based mea-
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urement [1] . Typically, software defined measurement enhances

he network management in a variety of ways: 

• High flexibility. The granularity of the measurement task can

be dynamically changed by modifying the corresponding mon-

itoring switches and rules. This property is extremely useful

because it tunes the flow aggregation granularity according to

real-time traffic. It also provides opportunities to trade off the

measurement cost and accuracy in both spatial and temporal

dimensions. 

• Generic measurement task support. The programmability of

SDN enables a uniform measurement framework to adopt var-

ious measurement tasks, such as packet-based measurement,

flow-based measurement and even sketch-based measurement.

Moreover, the logically centralized controller supports multiple

measurement tasks running across the network in parallel. 

• Low deployment cost. The deployment of NetFlow and sFlow

usually requires switch hardware support. Extra measurement

components such as data collector and analysis module are

needed. In SDN, in order to set up measurement tasks, only

the controller and the corresponding switches are involved:

the controller installs the monitoring rules to the switches and

http://dx.doi.org/10.1016/j.comcom.2017.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2017.02.009&domain=pdf
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mailto:twangah@cse.ust.hk
mailto:hamdi@cse.ust.hk
http://dx.doi.org/10.1016/j.comcom.2017.02.009
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maintains their states. Clearly, the deployment is light-weight

and the measurement cost is relatively low. 

However, software defined measurement brings both opportu-

nities and challenges. Despite the high flexibility of software de-

fined measurement, TCAMs and SRAMs are required to match the

hash value of the packet header and to store counters, respec-

tively. Unfortunately, TCAM is power-hungry and expensive to im-

plement in switches. There are only thousands of TCAM entries in

most of the commodity switches today [2–4] . SRAMs are compar-

atively cheaper, but they still have a limited size [1] . The accuracy

of the upper layer monitoring applications are determined by the

resources allocated to it [4,5] . Moreover, TCAMs are mainly used

as forwarding components, which further limits the number of en-

tries for the monitoring applications. 

In this paper, we concentrate on optimizations for sketch-based

measurement. Sketch-based measurement usually uses streaming

algorithms to provide compact traffic summary [1,4,5] . Compared

with traditional measurement tools such as NetFlow [6] and sFlow

[7] , sketch-based measurement is able to perform various mea-

surements at relatively low memory usage with a required accu-

racy bound. 

We observe that sketch-based measurement has two interesting

properties. First, sketch-based measurement usually has provable

accuracy bounds when given the allocated resource. The accuracy

of measurement tasks can be estimated in advance. Second, less

is more: the relation between the resource and accuracy is con-

form to the law of diminishing marginal utility [4,5] . For instance,

for a probabilistic counting with stochastic averaging (PCSA) sketch

[8] , if the accuracy increases from 22% to 61%, only 3 bitmaps are

needed; in contrast, if the accuracy raises from 90% to 95%, about

180 bitmaps are needed. These two observations motivate us to

save a large amount of resource and accept more monitoring ap-

plications by slightly trading off the accuracy of some resource-

hungry applications. Compared with our previous work COSTA [9] ,

JOTA takes both TCAM and SRAM resource into account, and we in-

troduce weight for each task to provide more assignment flexibil-

ity. Besides, we develop another novel heuristic to solve the multi-

resource task assignment problem, which is much harder than the

single-resource assignment problem. Our approach enables a pos-

sibility to use provisioning and optimization techniques to place

tasks intelligently. 

The primary contributions of this paper are listed below: 

• We present JOTA, a novel system for sketch-based measure-

ment, which achieves different levels of balance between the

measurement application accuracy and the resource usage. 

• We formulate the sketch-based software defined measurement

task assignment as a mixed integer nonlinear programming

problem which is proved to be NP-hard. Due to its high com-

putational complexity, we decompose the problem and propose

a near-optimal two-stage heuristic to generate the final task as-

signment with negligible performance loss. 

• Extensive experimental results demonstrate that JOTA is effi-

cient in terms of running time, acceptance ratio and accuracy.

It significantly reduces the resource usage and raises the task

acceptance ratio. 

The rest of this paper is structured as follows. Section 2 intro-

duces the background of sketch-based measurement. Section 3 de-

scribes the architecture of JOTA and formulates the task assign-

ment problem in software defined measurement. Specifically, we

decouple the problem into two phases and propose a novel heuris-

tic to obtain near-optimal assignment. Section 4 elaborates on

the performance of JOTA by real packet traces simulation. Finally,

Section 5 summarizes related work and Section 6 concludes the

paper. 
. Sketch-based measurement tasks 

In this section, we detail the implementation of three typical

oftware defined measurement tasks and present the methodology

o estimate the resource usage by their accuracy bounds. 

.1. Packet sampling 

Packet Sampling (PS) is a common task in network monitor-

ng. To implement a power-of-two ratio sampling, we can lever-

ge the wildcard rules in TCAMs. For example, for the following

ildcard rules R 1 : 0 ∗∗∗, R 2 : 00 ∗∗ and R 3 : 0 0 0 ∗, the probability

hat the hash of a packet matches R 1 , R 2 and R 3 is 1 
2 , 

1 
2 2 

and
1 

2 3 
, respectively. We can extend the power-of-two ratio sampling

o a more general case. Consider any decimal probability p can

e converted to a binary floating point number. However, some-

imes the binary floating point number is of an infinite length (e.g.

(0 . 33) 10 = (0 . 0101 . . . ) 2 ). Thus, we have to trade off the truncated

ength and the accuracy. Given the fraction part of the binary float-

ng point number B = b 1 b 2 . . . b n , we need l(B ) = 

∑ n 
i =1 b i TCAM en-

ries to implement the arbitrary probability packet sampling. Obvi-

usly, l ( B ) is bounded by n , which is determined by the expected

ccuracy. Assume each TCAM entry has e bits, to construct the

ildcard rules group, for each bit b i = 1 in B , we create a rule fol-

owing this pattern: set the leftmost i − 1 bits to 1, the i th bit to 0,

nd wildcarded all other bits. For example, for e = 8 , we create two

ules for (0.0101) 2 : R 1 : 10 ∗∗∗∗∗∗, R 2 : 1110 ∗∗∗∗. The probability that

 packet hash matches any one of the rules is: P = 

∑ 

b i =1 2 
−i ≈ p.

iven the expected accuracy and the sampling rate p , we calculate

he binary floating point number of p and truncate it by the ex-

ected accuracy. We obtain the required number of TCAM entries

y l ( B ) afterwards. Define the accuracy function as f ( T, S ), where T

nd S are the allocated TCAMs and SRAMs respectively. The accu-

acy function is given by: 

f PS (T , S) = 

T ∑ 

i =1 

2 

−i = 1 − 1 

2 

T 
(1)

.2. Unique IP counting 

Unique IP Counting (UIC) is another fundamental monitoring

ask in network managements. Many anomaly detection tasks such

s denial-of-service attacks monitoring are implemented by UIC. In

oftware defined measurement, we can employ PCSA sketch [8] to

ount the number of unique header field of packets in a memory-

fficient way. 

PCSA sketch hashes an element (e.g. packet header) into differ-

nt bins of a bitmap with a power-of-two ratio and estimates the

umber of distinct values by the bitmap. The bitmap is defined as

 = b 1 b 2 . . . b l of a length l , where b i = { 0 , 1 } , i = 1 , 2 . . . , l. All bits

re initialized to zero in the beginning. Define hash function h ( x )

s the position of the rightmost “1” of the uniformed distributed

ash value of x . In order to insert an element x , we set bit b h ( x ) to

1”. Obviously, we have P (h (x ) = i ) = 2 −i . Finally, The number of

nique values can be derived from the length of the uninterrupted

lock of ones in B , whose length l ( B ) is defined as: 

(B ) = min { i | 0 < i ≤ n ∧ b i = 0 } − 1 (2)

For a single bitmap, the number of distinct values C ( B ) can be

stimated as C(B ) = 2 l(B ) /φ, where φ ≈ 0.775351 is a constant.

o further reduce the relative error of the estimation, we use m

itmaps to improve its quality. To add an element to the sketch, in-

ert only one of the m sketches randomly. Suppose the m sketches

re B , B , . . . , B m 

, the number of unique values C(B , B , . . . , B m 

) is
1 2 1 2 
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R1: * * * * * * * * 1 0 0 0 4
R2: * * * * * * * * * 1 0 0 3
R3: * * * * * * * * * * 1 0 2
R4: * * * * * * * * * * * 1 1

Fig. 1. Example of wildcard rules group for a PCSA sketch. 
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Fig. 2. Theoretical accuracy for a bloom filter as the allocated TCAMs increase. (200 

target flows, 72 bits TCAM and 3 hash functions). 
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stimated as: 

(B 1 , B 2 , . . . , B m 

) = m · 2 

1 
m 

∑ m 
i =1 l(B i ) 

φ
(3)

The relative error of the PCSA sketch in (3) is proved to be

oughly φ/ 
√ 

m [8] . Assume the allocated SRAM size is S , the theo-

etical accuracy for PCSA sketch is 1 − φ
√ 

l √ 

S 
. The PCSA sketch can

e implemented by a group of wildcard rules. Suppose the up-

er bound number of unique values is U , the required number of

CAM entries n is determined by n = � log 2 U� . Each rule R i is con-

tructed as follows: set the rightmost i − 1 bits to “0”, the i th bit to

1”, and wildcarded the other bits. The probability of a hash that

atches R i is 2 
−i . Fig. 1 is an example with the upper bound num-

er of unique values 16. The priority is marked right next to each

ule. Clearly, the wildcard group can match the rightmost “1” of

he given hash value as they have descending priorities. It is worth

oting that the required number of TCAMs for PCSA sketch cannot

e compressed. Otherwise, the estimated unique values will over-

ow. The accuracy function is given by: 

f UIC (T , S) = 1 − φ
√ 

l(B ) √ 

S 
(4)

.3. Flow size counting 

Flow Size Counting (FSC) is a monitoring task which counts

he size of a set of flows. FSC can be implemented by bloom fil-

er and CM sketch [10] , where the former filters the target flows

nd the latter counts the flow size. Bloom filter can be imple-

ented by TCAMs in switch. A single TCAM entry usually has a

ength of 72–576 bits today [11] . Due to the false positive rate and

he limited bits length in TCAMs, target elements can be stored in

ultiple TCAM entries. The false positive rate of a bloom filter is

(1 − e −
kn 
m ) k , where n is the number of elements, m is the length of

he bitmap and k is the number of hash functions. Given the ex-

ected accuracy αe , the required number of TCAM entries can be

btained by: �− nk 

m ln (1 −(1 −αe ) 
1 
k ) 

� . 
After filtering the target flows, we utilize CM sketch to sum-

arize the filtered packet stream. Each element of the stream is a

equence ( i t , c t ), where i t is the flow id of packet t, c t is the length

f packet t . Let τ denote the query time. Then, s i (τ ) = 

∑ τ
t=0 c t δi,i t 

s the size of flow i up to the current time τ , where δi,i t 
= 1 if

 = i t , otherwise δi,i t 
= 0 . Given the error rate ε and the failure

robability δ, we have w = � e ε � and d = � ln 

1 
δ
� . A 2-dimension ar-

ay A with d rows and w columns is created to store the counters.

he required SRAM size is determined by � e ε � · � ln 

1 
δ
� . Upon receiv-

ng a packet t , the following counters are updated: A [ j][ h j (i t )] =
 [ j][ h j (i t )] + c t , j = 1 , 2 . . . d. The size of flow i up to τ can be esti-

ated as: ˆ s i (τ ) = min j A [ j][ h j (i t )](τ ) . The accuracy function of FSC

s given by: 

f F SC (T , S) = (1 − (1 − e −
kn 
mT ) k ) ∗ (1 − e · � ln 

1 
δ
� 

S 
) (5)

These tasks are carefully selected: the packet sampling task is

 typical TCAM-based monitoring application, whose accuracy is

ffected by the allocated number of TCAM entries; the unique IP

ounting uses fixed number of TCAM entries, while its accuracy
s determined by the allocated SRAM size; the flow size counting

s a mixed sketch measurement task whose accuracy is related to

he allocated TCAM and SRAM resource. Although we only choose

hree typical tasks, JOTA is generic to be easily extended to a vari-

ty types of tasks by providing their theoretical accuracy functions.

. JOTA design 

In this section, we explain the motivation of the joint task as-

ignment and describe the architecture of JOTA. The formulation

f the joint task assignment problem is presented thereafter. Due

o its high computational complexity, a two-stage heuristic is pro-

osed to efficiently generate the task assignment. 

.1. Motivation 

Fig. 2 illustrates the theoretical accuracy for a flow size count-

ng task as the allocated TCAMs increase. An interesting observa-

ion is that when the accuracy is above 90%, the required number

f TCAM entries increases dramatically even with little increment

f the accuracy. Intuitively, for high-accuracy measurement tasks,

y sacrificing a little bit accuracy, the consumed resource would

e decreased significantly. Combining this property with the prov-

ble accuracy bounds of the sketches, it is promising to design

 software defined measurement task assignment system, which

trikes a good balance between the accuracy and the consumed

esource by leveraging the cross-layer information of the measure-

ent tasks. 

Resource allocation can be achieved by dynamic or static allo-

ation technique. Dynamic allocation has the capability to adap-

ively tunes resource according to the traffic change. However, it

sually uses simple heuristic to find a sub-optimal solution with-

ut sophisticated models and planning. In contrast, static allocation

ethods can leverage optimization techniques to obtain better as-

ignment result by provisioning the resource usage. For the sketch-

ased measurement, the resource usage can be easily derived and

ost of the real-world tasks keep unchanged as time varies. There-

ore, static resource allocation is promising in this scenario. 

.2. Overview 

Theoretically, software define measurement can be divided into

hree layers as illustrated in Fig. 3 . From the top to the bottom, the

pplication layer includes monitoring applications, which accom-

lish monitoring tasks by the measurement API provided by the

anagement layer. The management layer takes responsibilities to

llocate resources and assign tasks to the underlying network. The

anagement layer communicates with the physical layer by the

PI provided by the SDN controller. 
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Application Layer

Physical Layer

...

Management Layer
Resource Allocator

Measurement API

Packet 
Sampling

Unique IP 
Counting

Traffic 
Counting

Task Assignment

SDN Controller API

Fig. 3. Layers of software defined measurement. 

Controller

OpenFlow 
Network

Flow Event Handler
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Module

Packet 
sampling

Unique IP 
counting

Flow size 
counting ...Measurement

Tasks

Flow State Tracker

Task Resource Estimator

    Assignment optimizer

R
esource 

A
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Fig. 4. JOTA architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Summary of notations. 

Symbol Definition 

G The undirected graph of the SDN network 

V The set of switches, m = | V | 
E The set of links 

C T 
i 

The number of TCAM entries in switch s i 
C S 

i 
The size of SRAM in switch s i 

D The set of tasks, n = | D | 
L j The eligible set of t j 
T j The allocated number of TCAMs for t j 
S j The allocated SRAM size for t j 
f j Theoretical accuracy function for t j 
F ij The profit to assign t j to s i 
φ A constant for PCSA sketch 

l The length of each bitmap 

S The allocated SRAM size for PCSA sketch 

U The upper bound of the number of unique values 

a j The expected accuracy for t j 
p j User specified weight for t j 
α Error tolerance factor 
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S  
JOTA mainly works in the management layer, while estimates

the resource usage in the application layer via the task resource

estimator. The trade-off between resource usage and task accuracy

can be achieved by the joint optimization across these two layers.

Each task can be assigned to a set of switches which is called eli-

gible set. For instance, in a multi-rooted tree topology, a unique IP

counting task can be deployed in different root switches. The eligi-

ble sets could be specified according to user requirements. Fig. 4 il-

lustrates the architecture of JOTA. The workflow is described as fol-

lows. The flow event handler receives and processes low-level net-

work messages through OpenFlow protocol. It pushes flow arrival

and removal notifications to the routing module and the flow state

tracker. The routing module generates the forwarding path for each

flow by the routing algorithm. The eligible switch set is gener-

ated by the routing module and the flow state tracker. Meanwhile,

the task resource estimator computes the requested resource based

on the user configuration and the task type. Finally, the sched-

uler synthesizes all the information and calculates the optimal task

assignment. The assignment is distributed to underlying physical

switches by the scheduler afterwards. 
.3. Problem formulation 

Table 1 lists the notations for the task assignment problem.

he SDN network is an undirected graph G = (V, E) , where V =
 s 1 , s 2 , . . . , s m 

} represents the set of switches with m = | V | , E rep-

esents the set of links in the network. Each switch s i has C T 
i 

TCAM

ntries and C S 
i 

SRAMs. Let D = { t 1 , t 2 , . . . , t n } denote the measure-

ent task set. For each task t j , let L j = { s j 1 , s j 2 , . . . , s j k } represent

he eligible set for t j , where k is the number of the candidate

witches. Variable T j denotes the assigned number of TCAM entries

or t j , S j denotes the allocated SRAM size for t j , and f j ( T j , S j ) denotes

he theoretical accuracy function for the corresponding sketch al-

orithm which is given T j TCAMs and S j SRAMs. f j is one of the

hree functions f PS , f UIC or f fsc . Network operator specifies an ex-

ected accuracy a j and a weight p j for task t j . An error tolerance

actor α which indicates the upper bound of loss in accuracy for

hese tasks is also given. We define the profit of a task as its the-

retical accuracy. The objective is to maximize the total profits of

ll the accepted tasks. Thus, if t j is not assigned to a switch be-

ongs to the eligible set, the profit F is zero. Let variable x ij denote

hether task t j is assigned to switch s i , the cross-layer task assign-

ent problem can be formulated as: 

ax 

m ∑ 

i =1 

n ∑ 

j=1 

F i j (T j , S j ) · x i j (6)

ubject to: 

n ∑ 

j=1 

T j x i j ≤ C T i , ∀ s i ∈ V (7)

n ∑ 

j=1 

S j x i j ≤ C S i , ∀ s i ∈ V (8)

m ∑ 

i =1 

x i j ≤ 1 , ∀ t j ∈ D (9)

f j (T j , S j ) ≥ (a j − α) ·
m ∑ 

i =1 

x i j , ∀ t j ∈ D (10)

 j ≥ 0 , ∀ t j ∈ D (11)

 j ≥ 0 , ∀ t j ∈ D (12)
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 i j ∈ { 0 , 1 } , ∀ s i ∈ V, ∀ t j ∈ D (13) 

where 

 i j (T j , S j ) = 

{
f j (T j , S j ) ∗ p j , if s i ∈ L j ; 
0 , otherwise. 

f PS (T , S) = 

T ∑ 

i =1 

2 

−i = 1 − 1 

2 

T 

f UIC (T , S) = 1 − φ
√ 

l √ 

S 
, T = � log 2 U� c 

f F SC (T , S) = 1 − (1 − e −
kn 
mT ) k ∗ (1 − e · � ln 

1 
δ
� 

S 
) 

 i j = 

{
1 , if t j is assigned to switch s i ; 
0 , otherwise. 

The formulation (6) is a Mixed Integer NonLinear Programming

MINLP) problem. Constraints ( 7 ) and ( 8 ) make sure that the to-

al consumed resource will not exceed the capacity of each switch.

onstraint ( 9 ) guarantees that each task will be assigned once to

he switches. Constraint ( 10 ) prevents the task accuracy drops be-

ow the accuracy bound. Finally, ( 11 ) and ( 12 ) specify T j and S j are

ositive, and x ij is a binary variable. The formulation is known to

e NP-hard [12] . In practice, it is more difficult to solve than the

ixed integer programming and nonlinear programming problem.

wing to its high computational complexity, we propose a two-

tage heuristic to generate task assignment efficiently. 

.4. Two-stage heuristic 

In software defined measurement, there are two stages to de-

loy a measurement application: 1. estimate the resource usage in

he application layer and 2. find the devices with enough available

esource in the management layer to assign these applications. It

s natural to decompose the initial problem into resource estima-

ion stage and task assignment stage. It is also worth noting that

y this partition, we divide the problem into a nonlinear program-

ing problem and an integer programming problem. At the same

ime, the task accuracy information is maintained. After this trans-

ormation, we propose a two-stage heuristic to efficiently gener-

te the task assignment with negligible performance loss. In the

ollowing section, we first describe the resource estimation stage

hich estimates and compresses the resource usage, then we de-

ail the task assignment stage to place these tasks into the under-

ying switches. 

.4.1. Resource estimation 

Suppose all the tasks have a fixed demand of resource usage,

hen the only way to accept more tasks and increase the profit is

o find a better placement of tasks, which is similar to a packing

roblem. However, benefit from the diminishing marginal utility

roperty of sketch-based measurement, we argue that it is possi-

le to compress the resource usage to accommodate more tasks.

ence, the objective of the resource compression problem is to

aximize the sum of tasks’ accuracy with the least total resource

sage. The compression ratio r can be specified by the network op-

rator. The resource compression problem can be formulated as: 

ax 

n ∑ 

j=1 

f j (T j , S j ) · p j (14) 

ubject to: 

n ∑ 

j=1 

T j ≤ r ·
m ∑ 

i =1 

C T i (15) 
t

n ∑ 

j=1 

S j ≤ r ·
m ∑ 

i =1 

C S i (16) 

f j (T j , S j ) ≥ a j − α, ∀ j ∈ N (17) 

 j ≥ 0 , ∀ t j ∈ D (18) 

 j ≥ 0 , ∀ t j ∈ D (19) 

here 

f PS (T , S) = 

T ∑ 

i =1 

2 

−i = 1 − 1 

2 

T 

f UIC (T , S) = 1 − φ
√ 

l √ 

S 
, T = � log 2 U� 

f F SC (T , S) = 1 − (1 − e −
kn 
mT ) k ∗ (1 − e · � ln 

1 
δ
� 

S 
) 

 i j = 

{
1 , if t j is assigned to switch s i ; 
0 , otherwise. 

Since the resource compression problem is a nonlinear opti-

ization problem, we propose an iterative numerical heuristic in

lgorithm 1 to approximate the optimal result. The key insight be-

Algorithm 1: Resource compression algorithm. 

Input : T : task set; A : task accuracy vector; C T CAM : expected 

TCAM usage; C SRAM : expected SRAM usage; α: error 

tolerance factor; g: iteration granularity 

Output : optA : Optimized task accuracy vector; optT : 

compressed TCAM usage; optS: compressed SRAM 

usage 

1 optA ← A, optT ← 0 , optS ← 0 , u ← α/g ; 

2 Init(pq ) ; // Init a priority queue 

3 for j ← 1 to n do 

4 Insert(pq, T [ j] , optA [ j]) ; 

5 (t, s ) ← f −1 
j 

(optA [ j]) ; 

6 optT ← opt T + t , optS ← optS + s ; 

7 while optT > C T CAM or optS > C SRAM do 

8 m ← Pop(pq ) ; // Pop the task that has the maximum 

accuracy 

9 (t pre v , s pre v ) ← f −1 
j 

(optA [ m ]) ; 

10 if optA [ m ] − u > A [ m ] then 

11 optA [ m ] ← optA [ m ] − u ; 

12 U pdate (pq, m, optA [ m ]) ; 

13 (t, s ) ← f −1 
j 

(optA [ m ]) ; 

14 optT ← optT − (t − t pre v ) , optS ← optS − (s − s pre v ) 

15 return optA, optT , optS 

ind the algorithm is that we always pick the most cost-effective

ask to reduce the resource usage, until the total resource usage

s below the expected value. We introduce a parameter g which is

he granularity to trade off the accuracy. At each step, we sacrifice
α
g accuracy and choose the most cost-effective task which reduces

aximum resource usage. In order to find such task, we apply a

riority queue to assist finding the task with the highest accuracy

fficiently ( O (1) time complexity). The complexity of the algorithm

s bounded by O ( ng log n ), where n is the number of tasks and g is

he iteration granularity. 
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3.4.2. Task assignment 

The key challenge of task assignment stage is to efficiently find

a placement to maximize the number of accepted tasks. The as-

signment should satisfy the constraints that for each switch, the

consumed TCAMs and SRAMs will not exceed the available TCAM

entries and SRAMs respectively. Therefore, the task assignment

problem can be formulated as an integer linear programming prob-

lem: 

max 

m ∑ 

i =1 

n ∑ 

j=1 

f j (T j , S j ) · p j · x i j (20)

subject to: 

n ∑ 

j=1 

T j x i j ≤ C T i , ∀ s i ∈ V (21)

n ∑ 

j=1 

S j x i j ≤ C S i , ∀ s i ∈ V (22)

m ∑ 

i =1 

x i j ≤ 1 , ∀ t j ∈ D (23)

x i j ∈ { 0 , 1 } , ∀ s i ∈ V, t j ∈ D (24)

where 

x i j = 

{
1 , if t j is assigned to switch s i ; 
0 , otherwise. 

The problem formulation (20) is a Multi-Resource Generalized

Assignment Problem (MRGAP) which is shown to be NP-hard [13] .

It had been shown to be harder to solve than the generalized as-

signment problem (GAP) [12] . Due to its high computational com-

plexity, heuristic algorithms are needed to find the assignment ef-

ficiently. A straightforward approach is a naive greedy algorithm.

For each task, we select a switch belongs to its eligible set and has

enough TCAM and SRAM resource to accept this task. We assign

the task to this switch and update its available resource. Repeat

such process until no more task can be accepted. We show this

first fit algorithm in Algorithm 2 , and we refer to it as “FF”. 

Algorithm 2: First fit algorithm. 

Input : T : task set; L : eligible switch set for each task 

Output : A : a feasible task assignment 

1 A ← {−1 , −1 , . . . , −1 } ; // Init the assignment vector 

2 foreach t ∈ T do 

3 foreach l ∈ L t do 

4 if T CAM(s ) ≥ T t and SRAM(s ) ≥ S t then 

5 A [ t] ← s , T CAM(s ) ← T CAM(s ) − T [ t] , 

SRAM(s ) ← SRAM(s ) − S[ t] ; 

6 break ; 

7 return A 

Although the first fit algorithm is always able to provide a feasi-

ble solution, it has no performance guarantee. Also, the generated

assignment has bad load balancing due to the algorithm prefers

to assign tasks to the switches which appear first. Thus, the algo-

rithm may lead to a sub-optimal solution. We try to improve the

first fit algorithm by reducing the MRGAP to a GAP which has good

approximation algorithms. We observe that the TCAM is more pre-

cious than the SRAM as it has a comparatively smaller size and

harder to compress. Based on this observation, we develop a novel

algorithm which relax the SRAM constraint and leverage a GAP ap-

proximation algorithm to provide a better assignment. 
First, we ignore the SRAM constraint and generate the assign-

ent only by the TCAM constraint. We attempt to improve the

ssignment by iteratively updating the profit and the assignment.

uppose we find an assignment for the first switch s 1 , which is a

–1 knapsack problem. Before processing the remaining switches,

e update the profit function according to the following rules: if

 task is assigned to s 1 , the profit to assign this task to s i , i =
 , 3 , . . . , m is updated to p i − p 1 . Otherwise, no action needed.

hen we find an assignment for the second switch s 2 and update

he profit to assign the task to s i , i = 3 , 4 , . . . , m if the task is as-

igned to s 2 . Repeat this process until all the switches are pro-

essed. Currently the assignment only takes TCAM constraint into

ccount. Namely, the assignment may violate the SRAM constraint

hich leads to an infeasible solution. Therefore, we perform con-

traint checking and remove the tasks which exceed the available

RAM resource in each switch from the assignment. Finally, we re-

un the first fit algorithm to fill unassigned tasks into these avail

paces. Note that this process corresponds to an algorithm shown

n Algorithm 3 , and we refer to this approximation algorithm as

Algorithm 3: Approximation algorithm. 

Input : T : task set; L : eligible switch set for each task; v i j : 

profit to assign task j to switch i 

Output : A : a feasible task assignment 

1 A ← {−1 , −1 , . . . , −1 } ; // Init the assignment vector 

2 for j ← 1 to m do 

3 for i ← 1 to n do 

4 if A [ i ] = −1 then 

5 V j [ i ] = v i j ; 

6 else if A [ i ] = k > 0 then 

7 V j [ i ] = v i j − v ik ; 

// Q stores the knapsack problem assignment 

8 Q ← ApproximateKnapsack (V j , L ) ; 

// Iteratively update the GAP assignment by Q 

9 for i ← 1 to n do 

10 if Q[ i ]! = −1 then 

11 A [ i ] ← Q[ i ] ; 

// Perform constraint checking and fill unassigned 

tasks 

12 for j ← 1 to m do 

13 Init(T CAM(s j )) , Init(SRAM(s j )) ; 

14 for i ← 1 to n do 

15 if A [ i ] > 0 and SRAM(A [ i ]) − SRAM(t i ) > = 0 then 

16 SRAM(A [ i ]) ← SRAM(A [ i ]) − SRAM(t i ) , 

T CAM(A [ i ]) ← T CAM(A [ i ]) − T CAM(t i ) ; 

17 F irstF it(T , L, A ) ; 

18 return A 

APX”. The rationale behind the algorithm is that the “marginal

tility” to assign a task to a switch is adjusted by iteratively updat-

ng the profit from time to time. Moreover, this algorithm is proved

o have a (1 + β) approximation ratio [14] , where β is the approxi-

ation ratio to solve the knapsack problem. Specifically, if we solve

he knapsack problem optimally by dynamic programming, the fi-

al task assignment has an approximation ratio of 2; if a greedy

lgorithm is applied to solve the knapsack problem with an ap-

roximation ratio of 2, the final task assignment approximation ra-

io is 3. 
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Table 2 

The performance comparison of the two- 

stage heuristic and the optimal solution for 

a small instance. 

Profit Running time (s) 

Optimal 2 .884 33 .25 

1st stage 2 .861 0 .27 

2nd stage 2 .884 0 .02 
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Fig. 5. Comparison of the total running time for different algorithms with resource 

compression (the compression ratio 0.7). 

Fig. 6. The running time of different algorithms as the number of switches in- 

creases. 
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.5. Implementation discussion 

The implementation of software defined measurement has been

ell studied [1,2,15] . Typically, these measurement implementa-

ions require hash functions, counters and wildcard rules, which

an be implemented in today’s commodity switches with slightly

ardware modification. JOTA mainly works in the controller and it

s a shim layer between the underlying network and measurement

pplications, which is on top of the prior sketch-based measure-

ent and has no extra implementation requirements. 

. Evaluation 

In this section, we evaluate and analyze the performance of

OTA comprehensively. We build a simulator written in Python and

 GAP solver written in C++. All the experiments are conducted on

 server with an Intel i7-4770 3.40 GHz processor and 32G mem-

ry. Both real-world topology and artificial generated graph are

pplied to evaluate the algorithms. We set similar parameters as

he prior work [4,5] . Specifically, the number of TCAM entries and

RAM size for each switch are set to 1024 and 4096 KB respec-

ively. The task accuracy is generated with a normal distribution

0.95, 0.2). We generate the source and destination hosts in a uni-

orm random manner and use the shortest path as their forward-

ng paths. The weight of each task is uniformly generated within

ange (0, 1). The workload consists of three types of tasks as men-

ioned in Section 2 . The accuracy experiments are conducted us-

ng real-world packet traces collected from a university data center

etwork [16] . 

.1. Two-stage heuristic performance 

To verify the performance of the two-stage heuristic, we com-

are the optimal solution and the heuristic in terms of the profit

nd the running time. We solve the MINLP by a widely-used

INLP solver OpenOpt [17] . We refer to this solution as optimal.

he test instance consists of 4 switches and 3 tasks of different

ypes as mentioned in Section 2 . We use a compression ratio of

.9 to reduce the resource usage. Table 2 lists the profit and the

unning time. Clearly, our two-stage heuristic generates the same

esult as the initial solution but 100 times faster than solving the

nitial problem. Note that even for such a simple and unpractical

nstance, the optimizer needs more than half a minute to solve the

INLP. The optimal algorithm is not scalable to practical instances.

oreover, the measurement task assignment usually involves dy-

amic flows and packets, it is crucial to generate a feasible solution

ithin several seconds. On the other hand, the MINLP solver iter-

tively searches the solutions and we observe that the results are

ensitive to the initial start point. Comparatively, the convergence

f our two-stage heuristic is guaranteed and it provides a feasi-

le solution all the time. In the following section, we will verify

he performance of the two-stage heuristic on practical large-sized

etworks. 
.2. Running time 

To evaluate the efficiency of our algorithms, we use Erd ̋os-Rényi

raph [18–20] ( p = 0 . 05 ) which is a widely-used random graph in

etwork research as the topology. Fig. 5 shows the running time as

he number of tasks varies from 500 to 10,0 0 0. As introduced be-

ore, we propose a first fit algorithm and a (1 + β) -approximation

lgorithm to generate task assignments, where β is the approxi-

ation ratio for the algorithm to solve the knapsack problem. It

s known that the greedy algorithm to solve the knapsack prob-

em has an approximation ratio of 2, and the dynamic program-

ing (DP) algorithm is able to obtain the optimal solution with

n approximation ratio of 1 [12] . Thus, we use “APX-G” and “APX-

P” to represent the 3-approximation and 2-approximation algo-

ithm respectively. The running time for all the algorithms is al-

ost linear in the number of tasks. Clearly, the FF and the APX-G

lgorithms are several hundred times faster than the APX-DP algo-

ithm, although the latter provides a tighter bound for the result.

n practice, the FF and the APX-G algorithms are preferable since

he measurement tasks are changing from time to time. These two

lgorithms are timely and scalable because they generate the as-

ignment within 90ms even for a huge number of tasks. 

We show the running time of varying the switch number from

0 to 200 in Fig. 6 . The number of tasks is in proportion to the

umber of switches with an overload ratio of 100. The figure indi-

ates that the running time for the FF and the APX-G is almost

inear in the size of the network. Even for a network with 200

witches and tens of thousands of tasks, they can produce a fea-

ible assignment within 0.5s. 

To explore the overhead of the resource compression, we show

n Fig. 7 the running time of the resource compression and the task

ssignment time of APX-G as the number of tasks varies. There

s a steady increment for the resource compression and the total

unning time. In particular, the resource compression time occu-
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Fig. 7. The running time for the resource compression and the task assignment. 

Fig. 8. Comparison of the total profit for different algorithms with resource com- 

pression (ratio 0.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The performance of resource compression of the TCAM with 5,0 0 0 tasks. 

Fig. 10. The performance of resource compression of the SRAM with 5,0 0 0 tasks. 

Fig. 11. The acceptance ratio of varying the compression ratio. 
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pies 60% of the total running time on average. Fortunately, the to-

tal running time is still acceptable since they are less than 0 . 25 s.

We will show in the following section that it is worth doing the

resource compression because it significantly reduces the total re-

source usage and improves the acceptance ratio. Besides, this over-

head is acceptable because the extra running time is less than

140ms even for 10,0 0 0 tasks. It is also worth noting that the re-

source compression has no effect on the running time of the sec-

ond stage, which is a nice property owing to the division of the

initial problem. 

4.3. Resource compression performance 

Fig. 8 shows the total profit of the proposed algorithms with re-

source compression. When the number of tasks is less than 30 0 0,

the profit increases linearly as there are space for new coming

tasks. However, the APX-G and the APX-DP are superior to the

FF when the switches are overloaded. The profit always increases

for these two algorithms while the FF performs not well as the

number of tasks increases. The performance of the two approxi-

mation algorithms has negligible difference. Consider the running

time and the performance, the APX-G outperforms the other two

algorithms because it strikes a good time-performance trade-off

and produces the near-optimal result very efficiently. 

We examine the performance of the resource compression algo-

rithm in Figs. 9 and 10 . The error tolerance factor α is set to 0.05

which allows up to 5% accuracy loss. As the compression ratio de-

creases, the total consumed number of TCAM entries is decreased

while maintain the tasks’ accuracy lower bounds. However, when

the compression ratio drops below 0.5, the average task accuracy

reaches the bottom. Therefore, the resource usage cannot be com-

pressed anymore. Otherwise, the accuracy of the tasks cannot be

guaranteed. Our resource compression algorithm works well to re-

duce the TCAM and the SRAM usage by up to 49% and 99% respec-

tively. Notice that the required SRAM usage drops sharply as the
ccuracy decreases. Therefore, Algorithm 3 leverage this property

o relax the SRAM constraint. In the following section, we study

he relation between the compression ratio and the task accep-

ance ratio. 

.4. Acceptance ratio 

The bridge between the two stages of JOTA is the resource com-

ression ratio. We define the task acceptance ratio as the number

f accepted tasks over the total number of tasks. We use a real

opology “Interroute” which is taken from a public network topol-

gy repository the Internet topology zoo [21] . The network con-

ists of 110 switches, which is a medium-sized Europe backbone

etwork. To further explore how the resource compression ratio

ffects the acceptance ratio, we analyze their relation in Fig. 11 . 

We clearly observe that the acceptance ratio for all the algo-

ithms raises as the resource compression ratio decreases. Specifi-

ally, after the resource compression, the FF raises the acceptance

atio by roughly 20%. The reason is that the FF utilizes a greedy

trategy instead of iteratively updating the assignment, resource

ompression stage greatly helps JOTA to accept more tasks as there
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Fig. 12. The acceptance ratio of varying the number of tasks (the compression ratio 

0.7). 

Fig. 13. The result of a unique IP counting task (with 11 TCAMs). 
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Fig. 14. The accuracy of a unique IP counting task. 

Fig. 15. The actual accuracy of a flow size counting task for different required ac- 

curacy. 
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re more available resource. Comparatively, the performance gain

or the two approximation algorithms is not as much as the FF,

ut we still get 10% of acceptance ratio increment. Note that al-

ost all the tasks have been accepted as the acceptance ratio is

aised to 85%, the resource compression significantly improve the

erformance of JOTA. However, when the compression ratio is be-

ow 0.7, there is no noticeable performance gain for all the algo-

ithms as the underlying network leaves no room to accommodate

ore tasks. 

In Fig. 12 we show the relation between the number of tasks

nd the acceptance ratio with a resource compression ratio of 0.7.

e clearly observe that the APX-G and the APX-DP perform uni-

ormly better than the FF as the number of tasks increases. This

s conform to the profit trend in Fig. 8 . The APX-G and the APX-

P accepts 33% more tasks than the FF when the number of tasks

s 10,0 0 0. The result also illustrates that the proposed approxima-

ion algorithms are not sensitive to the increasing number of tasks.

lthough the acceptance ratio decreases as there is no available re-

ource in the network, the total profit of JOTA keeps increase grad-

ally. 

.5. Task accuracy 

We use packet traces collected from a university data center

16] to verify the task accuracy in the measurement application

ayer. We case study the accuracy of an accepted unique IP count-

ng task and a flow size counting task. 

The accuracy for unique IP counting task is defined as the dif-

erence between the measured and the actual number of unique

Ps over the ground truth at one specific moment. Fig. 13 shows

he actual and the measured number of unique IPs for a six minute

races. As introduced in Section 2 , the unique IP counting task

ses a fixed number of TCAMs which cannot be compressed. The

equired accuracy is 90%. The query interval for the number of

nique IPs is ten seconds. Clearly, the measured number of unique
Ps closely follows the actual number of unique IPs. The required

ccuracy and the actual accuracy are depicted in Fig. 14 . Obviously,

he accuracy is better than the required accuracy in most of the

ime. The average accuracy is 93.1% which is above the required

ccuracy. 

We also examine the accuracy of a flow size counting task as

he required accuracy decreases from 99% to 90%. A six minute

races with 22,0 0 0 flows are used in our experiment. The number

f target flows are 200. The accuracy is defined as the number of

orrectly measured flows over the total number of flows. The re-

ult is shown in Fig. 15 . The consumed number of TCAMs are also

lotted. We observe that the actual accuracy is always above the

equired accuracy. This is conform to the theoretical false positive

ate bound of the bloom filter. Also, by relaxing the accuracy from

9% to 96%, the consumed number of TCAMs drops from 35 to 20,

hich reduces 43% of the resource usage for this task. 

In summary, we verify that our two-stage heuristic provides

ear-optimal solution and it is scalable to large scale networks. The

PX-G algorithm strikes a good trade-off between the running time

nd the performance. Our resource compression algorithm is quite

ffective and greatly helps the FF algorithm to increase the accep-

ance ratio. It assists the approximation algorithms to accept more

asks as well. The case studies of the two typical measurement ap-

lications demonstrate that the task assignment generated by JOTA

uarantees the expected accuracy. 

. Related work 

Software defined measurement has been extensively studied re-

ently. ProgME [22] enabled flexible flow counting by introduc-

ng the concept of flow set which is an arbitrary set of flows

or different applications. OpenSketch [1] proposed a three-stage

ipeline to implement a variety of sketch-based streaming algo-

ithms for network monitoring. DCM [15] designed a two-stage

loom filters as the data plane to achieve memory-efficient flow
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measurement. Furthermore, MeasuRouting [23] rethinks the mea-

surement framework to route the traffic according to the measure-

ment requirements. Besides, sketch techniques were widely used

in different issues of data mining field, such as tracking frequent

items [24,25] and topic discovery [26] . These work proposed var-

ious frameworks to improve the implementation of measurement

applications. Our work is inspired by these proposals and built on

top of the OpenSketch architecture. 

Based on existing software defined measurement frameworks,

many systems are proposed to implement cost-effective measure-

ment applications. OpenTM [27] presented a traffic matrix estima-

tion system in the OpenFlow-based network. It explored the trade-

off between the switch workload and the accuracy by compar-

ing different query strategies. Following work [28,29] globally op-

timized the overhead of statistics collection. PayLess [30] proposed

APIs to collect the flow statistics using adaptive polling frequency.

In order to further reduce the measurement cost, FlowSense

[31] employed passive measurement techniques to infer the net-

work utilization with zero measurement cost. The implementation

of secure monitoring in SDN are studied as well [32,33] . On the

other hand, sampling is widely used to reduce the overhead of

software defined measurement. CSAMP [34] maximized the mon-

itoring flow coverage by consistent sampling. DevoFlow [2] pro-

posed a sampling-based method to improve the performance of

statistics collection. Moreover, a sampling extension for monitor-

ing applications is presented in [35] . OpenSample [36] attempted

to reduce the control loop for active measurement in SDN by

a protocol-aware sampling. OpenWatch [37] proposed a predic-

tion based dynamic adjustment scheme for anomaly detections,

it tuned the measurement granularity in both the spatial and the

temporal dimensions. Besides, low-latency software defined mon-

itoring is also explored [36,38,39] . These work mainly focused on

the design of cost-effective measurement applications. In contrast,

JOTA works as a middle-layer to optimize the placement of these

applications. 

Resource allocation for software defined measurement has at-

tracted significant attention from many researchers. L. Jose et al.

detected hierarchical heavy hitters by changing the measurement

rules in the switches [40] . Detailed analysis of the trade-off be-

tween the accuracy and the resource usage was presented in [5] .

Since the case study only focused on the single switch measure-

ment task, DREAM [4] extended the work to dynamically allo-

cate resource across multiple switches. A recent work SCREAM

[41] used a variation of the dynamic allocation algorithm to allo-

cate SRAM resource to sketch-based measurement tasks. DREAM

and SCREAM are the most related work to JOTA. However, DREAM

focused on TCAM-based measurement, while SCREAM concen-

trated on memory-hungry sketch-based measurement. Besides, our

previous work [9] optimized sketch-based measurement by con-

sidering only TCAM resource allocation as well. JOTA is orthogo-

nal to these approaches since it takes both TCAM and SRAM re-

source constraints into account. Furthermore, after we revisit the

task assignment process, we introduce a novel resource compres-

sion stage to globally optimize the task assignment. 

6. Conclusions and future work 

In this paper, we present JOTA, a novel sketch-based measure-

ment task assignment system for software defined networks. We

explore the relation between the accuracy and the allocated re-

source for various sketch-based measurement tasks. By consider-

ing both the estimation of resource usage in the application layer

and the available resource in task assignment layer, we formu-

late the task assignment problem as a mixed integer nonlinear

programming problem. Due to its high computational complex-

ity, we decompose it into the resource compression stage and the
ask assignment stage. A two-stage heuristic is proposed to effi-

iently produce task assignment. Specifically, JOTA compresses the

esource usage in the first stage and relaxes one constraint to

ransform the problem to an MRGAP in the second stage. It lever-

ges a (1 + β) approximation algorithm to generate task assign-

ent thereafter. The performance of JOTA is verified by simulations

ith different types of tasks and real-world packet traces. The ex-

erimental results demonstrate that JOTA significantly reduces the

esource usage and increases the task acceptance ratio with negli-

ible loss in accuracy. Currently, we only support assigning task to

ne switch. In the future, we plan to extend our model to accom-

odate multiple switches assignment with performance guarantee.

e also would like to develop an intelligent algorithm to find the

ptimal compression ratio without user intervention. 
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