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a b s t r a c t 

As an efficient solution to diversify the future Internet for resource sharing in data centers, the network 

virtualization enables seamless integration of network experiments, services and architectures with dif- 

ferent features by allowing multiple heterogeneous virtual networks (VNs) to simultaneously coexist on a 

shared substrate infrastructure. Embedding multiple virtual networks onto a shared substrate by allocat- 

ing substrate resources to virtual nodes and virtual links of VN requests under a collection of constrains 

is known to be an NP-hard problem even for the offline VN embedding. To deal with this issue, this pa- 

per formulates the VN embedding problem as a new multiple objective linear programming optimization 

program, and solves it in a preemptive strategy by decomposing the problem into node mapping and 

link mapping phases. Furthermore, based on an Artificial Intelligence resource abstraction model, named 

Blocking Island (BI), we propose an efficient online heuristic VN embedding algorithm called Presto. Presto 

operates with quite low computation complexity and greatly reduces the search space, which far out- 

performs other candidates. The goal of Presto is to maximize the economic revenue of infrastructure 

providers while minimizing the embedding cost. The extensive simulation results further prove the fea- 

sibility and good performance of Presto in revenue, VN request acceptance ratio, computation efficiency 

and resource utilization. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

As highly multiplexed shared environments, cloud data centers

are equipped with a large number of physical servers and virtual

machines (VMs) hosted in servers to simultaneously offer mul-

tiple tenants with on-demand use of computing resources in a

pay-as-you-go manner [1–5] . How to efficiently share the physi-

cal network resources among multiple tenants that have diversi-

fied network topologies with different network characteristics is

a key concern. With respect to this issue, network virtualization

has emerged as an efficient technology for resource sharing, where

multiple heterogeneous network architectures are allowed to co-

exist on a shared substrate [6–8] . Upon on the virtualized shared

data centers, the infrastructure providers then make best effort

to utilize the substrate resources to serve the users that request
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ustomized services with required resources (such as CPU capac-

ties, network bandwidth, etc.) running over different user self-

efined network topologies, which are also known as virtual net-

orks (VNs). Each virtual network consists of a set of virtual nodes

nterconnected through a set of virtual links with required ca-

acities. The allocation of substrate resources to the virtual net-

orks is called virtual network embedding 3 (VNE). Each virtual

ode is mapped onto a substrate node, while each virtual link is

apped onto a substrate path connecting the corresponding sub-

trate nodes under a series of pre-defined constraints. Fig. 1 illus-

rates an example of virtual network embedding, where two em-

edded virtual networks share the same substrate network. 

The main objective of solving VNE problem is to make efficient

se of substrate resources through dynamic and effective VN map-

ing algorithms. Although embedding diversified virtual networks

f different users onto the underlying physical network can maxi-

ize the benefits gained from existing hardware of the infrastruc-

ure, VNE has been presented as a very challenging resource allo-

ation problem [9–11] that has been addressed in many research
3 In this paper, “embedding” and “mapping” are used interchangeably. 

http://dx.doi.org/10.1016/j.comnet.2016.06.036
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Fig. 1. Virtual network embedding on a shared substrate network. 
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tudies [12–17] . In fact, the VNE problem is NP-hard [13,15,16,18] ,

ven in the offline case. Even when all the virtual nodes are

mbedded, to embed the virtual links is still NP-hard [15,19,20] .

aturally, the online case of VNE problem would be more

ntractable. 

In response to this issue, in this paper we propose an efficient

nline heuristic VNE algorithm, named Presto , based on an Artifi-

ial Intelligence resource abstraction model called Blocking Island.

resto decomposes the VNE problem into two separate phases: vir-

ual node mapping and virtual link mapping. In each phase, with

he help of BI model, Presto ranks and embeds the virtual nodes

r virtual links in a most advantageous order aiming to maximize

he acceptance ratio. All the VN requests are also sorted accord-

ng to some specific metrics, which targets at maximizing the eco-

omic revenues and minimizing the embedding cost. In addition,

he proposed sliding window based batch processing approach en-

bles Presto with the ability of lookahead and forward checking

hen processing the dynamically arriving VN requests. Moreover,

ith the benefit of BI paradigm, the search space is significantly

ecreased, and accordingly, the computation efficiency is greatly

mproved. 

The primary contributions of this paper can be summarized as

elow: 

1. Two heuristic variable ordering algorithms HVNO and HVLO

are designed. 

2. A node mapping algorithm HNM and a link mapping algo-

rithm HLM are put forward. 

3. To the best of our knowledge, we are the first to apply BI

paradigm to solve the VNE problem. 

4. Extensive simulations are conducted to evaluate the perfor-

mance of Presto . 

The rest of the paper is organized as follows. First we

riefly review the related research literature in Section 2 . Then

ection 3 demonstrates the VN mapping model and problem for-

ulation. In Section 4 , the formulated multiple objective lin-

ar programming problem is presented. Afterwards, Section 5 in-

roduces the BI paradigm. The Presto framework is designed in

ection 6 followed by evaluations in Section 7 . Section 8 concludes

his paper. 

. Related work and motivation 

A considerable number of research and investigations have

een conducted on the virtual network embedding problem in re-

ent years. In order to deal with the computationally intractable

NE problem, most of the proposals resort to heuristic algo-

ithms aiming to find some feasible solutions other than opti-
al solutions. Generally, the existing works can be classified into

wo categories: offline algorithms [14,21,22] and online algorithms

12,13,16,18,23] . 

The offline algorithms process based on the assumption that

ll VN requests are defined and known in advance. The authors

n [21] proposed a Max-Min Ant Colony metaheuristic based ap-

roach which uses parallel artificial ants to iteratively explore

he search space for feasible candidates and select the candidates

ased on some specific objectives. The work of [14] also studied

he offline problem, but they only considered the single VN em-

edding in specific backbone-star topologies and assumed the sub-

trate resources are unlimited with only bandwidth constraints.

omparatively, I.Houidi [22] proposed a distributed VN embed-

ing approach also by assuming that the substrate resources are

nlimited and all the VN requests are known in advance. How-

ver, this distributed approach needs a number of signalling mes-

ages exchanged between the substrate nodes asynchronously so

s to organize the distributed algorithm iterations, which increases

ime delay and signalling network overload. Correspondingly, The

ork [24,25] introduced a distributed and parallel VNE frame-

ork DPVNE, which can be used in combination with various cost-

educing embedding algorithms. According to their evaluation re-

ults, DPVNE achieves smaller message overhead and suggests a

radeoff between message overhead and the parallelism level. In

hese offline methods, all the VN requests can be considered to-

ether for embedding, which may achieve a better result than the

nline methods which do not have any global view and knowledge

bout the future allocations. However, to know all the VN requests

n advance is not practical in real world, where dynamic online al-

orithms are more suitable and preferred. 

The online VNE algorithms study the on-demand VN assign-

ent problem, where algorithms dynamically compute a feasible

et of substrate nodes and links to embed the virtual nodes and

inks upon the arrival of a VN request. Yu et al. [16] advocated

n effective online approach, where they simplified the VNE prob-

em by applying two specific strategies, path splitting and path mi-

ration, with admission control. In this work, a virtual link is al-

owed to be mapped to multiple substrate paths for splittable flows

nd path migration is used to periodically re-optimize the utiliza-

ion of substrate resources. Comparatively, the paper [12] solved

he VNE problem efficiently by applying the PageRank algorithm,

here both substrate nodes and virtual nodes are ranked based

n some metrics and then the virtual network is embedded based

n these ranks. Their goal is to increase the acceptance ratio

f online VN requests and as well as the overall revenue. The

ork [13] formulated the VNE problem as a mixed integer pro-

ramming problem through substrate network augmentation by

dding a set of node constraints like geographical locations. Then

he formulated MIP problem is relaxed to a linear program and

olved using deterministic and randomized rounding techniques.

nother online embedding algorithm [18] is designed by reducing

he VNE problem to the well known Subgraph Isomorphism De-

ection problem, where it maps nodes and links during the same

tage. 

Besides of considering the embedding cost and revenues, the

omputation efficiency is also a very important factor, especially

n data centers. However, known as an NP-hard problem, the VNE

uffers from intractable computation complexity with huge search

omain. Though researchers proposed many heuristic algorithms to

mprove computation efficiency at the cost of sacrificing the opti-

ality of results, the computation is still not efficient enough and

he search space is still too huge. In regard to this issue, we pro-

ose a heuristic algorithm based on the powerful BI model which

reatly increases the computation efficiency and significantly de-

reases the search domain. Moreover, it also saves much time in

etermining the acceptance of a VN request. 
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Fig. 2. An example of mapping VN requests onto a shared substrate network. 
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3. VN mapping model and problem formulation 

3.1. Substrate network model 

The underlying substrate network can be modelled as a

weighted undirected graph G s = (N s , E s ) , where N s is the set of

substrate nodes of the network and E s is the set of substrate links

between nodes of N s . Each substrate node n s ∈ N s has an associated

capacity weight value C ( n s ) to denote the available CPU capacity of

the physical node n s . Each substrate link e s ( i, j ) ∈ E s between two

substrate nodes i and j is associated with a bandwidth capacity

B ( e s ), which denotes the amount of available bandwidth. The set

of all substrate paths is denoted by P s and the available bandwidth

of a substrate path p ∈ P s between two substrate nodes is repre-

sented by B ( p ). Fig. 2 illustrates an example of substrate network

graph, where the numbers associated with the links indicate the

available bandwidth and the values in rectangles denote the avail-

able CPU resources of the nodes. 

3.2. Virtual network model 

The virtual network topologies are set up on demand over the

shared substrate network based on the received VN requests from

users. Likewise, the virtual network also can be represented by a

weighted undirected graph G v = (N v , E v ) , where N v indicates the

set of virtual nodes and E v is the set of virtual links between nodes

of N v . Each virtual node n v ∈ N v and virtual link e v ∈ E v are associ-

ated with a minimum required CPU capacity C ( n v ) and a minimum

required bandwidth capacity B ( e v ), respectively. 

We denote the virtual network (VN) request by a quadru-

ple R v = (Rid, G v , C v , B v ) , where G v = (N 

Rid 
v , E Rid 

v ) , Rid is the unique

identifier of a VN request, C v = [ C(n i v )] indicates a vector of min-

imum required CPU capacities for virtual nodes n i v where 1 ≤ i ≤
| N 

Rid 
v | , and B v = [ B (e v (i, j))] represents a matrix of minimum re-

quired bandwidth capacity for links e v (i, j) ∈ E Rid 
v between virtual

nodes n i v and n 
j 
v where 1 ≤ i, j ≤ | N 

Rid 
v | . Fig. 2 gives an example of

two VN requests with node and link constraints. 

3.3. Measurement of network resources 

The decision of VN request allocation should be made upon

the usage status of substrate network resources so as to avoid ex-

ceeding the node capacity. In this work, we use actual amount of

allocated and available CPU and bandwidth resources to measure

the substrate network resources other than the number of virtual

nodes and links. 
.3.1. CPU resources of nodes 

Let �N ( n s ) be the total amount of CPU resources allocated to

he virtual nodes embedded on the substrate node n s ∈ N s , then

e have 

�N (n s ) = 

∑ 

n i v 

C(n 

i 
v ) , 0 ≤ i ≤ �n s (1)

here �n s is the number of different virtual nodes hosted on the

ubstrate node n s . 

Correspondingly, if we denote the residual or available CPU re-

ources of a substrate node n s by �N ( n s ), then it can be derived

hat 

N (n s ) = C(n s ) − �N (n s ) (2)

.3.2. Bandwidth resources of links 

By analogy, let �E ( e s ) be the total amount of bandwidth allo-

ated for the virtual links whose mapped substrate path p ∈ P s 
asses through the substrate link e s ∈ E s , then we have 

�E (e s ) = 

∑ 

e i v 

B (e i v ) , 0 ≤ i ≤ �e s (3)

here �e s is the number of different virtual links mapped onto

he substrate link e s . 

The available bandwidth �E ( e s ) of substrate link e s then can be

omputed as 

E (e s ) = B (e s ) − �E (e s ) (4)

.3.3. Bandwidth availability of substrate paths 

The available bandwidth capacity B ( p ) of a substrate path p ∈
 s between two substrate nodes can be measured as the minimal

esidual bandwidth of the links along the substrate path: 

E (p) = min 

e s (i, j) ∈ p 
�E (e s (i, j)) (5)

.3.4. Cost measurement of VN embedding 

During the process of embedding one VN request R v =
(Rid, G v , C v , B v ) , the total amount of reserved substrate nodes’ CPU

apacities Cost(N 

Rid 
v ) for its virtual nodes N 

Rid 
v is deterministic,

hich equals to the sum of their required CPU capacities, i.e., 

ost(N 

Rid 
v ) = 

∑ 

n i v ∈ N Rid 
v 

C(n 

i 
v ) , 1 ≤ i ≤ | N 

Rid 
v | (6)

However, the total amount of allocated link bandwidth capac-

ties Cost(E Rid 
v ) is indeterminate, and it depends on the length

f substrate paths onto which the virtual links mapped. The link

apping cost can be computed as 

ost(E Rid 
v ) = 

∑ 

e v (i, j) ∈ E Rid 
v 

B (e v (i, j)) ∗ | p s (n 

i 
v , n 

j 
v ) | (7)

here virtual link e v ( i, j ) is mapped onto substrate path p s and

 p s (n i v , n 
j 
v ) | denotes the number of links on path p s . 

Take Fig. 2 as an example, given that the virtual nodes of VN

equest 1 are mapped as {a → A, b → C, c → G} and the vir-

ual links mapped to the substrate paths as {(a,b) → (A,C), (b,c) →
C,E,G), (c,a) → (G,H,A)}, then the total reserved link bandwidth for

N request 1 will be Cost(E 1 v ) = 21 ∗ 1 + 8 ∗ 2 + 15 ∗ 2 = 67 . If we

eep the way of node mapping the same, but remap virtual links

o substrate paths as {(a,b) → (A,B,C), (b,c) → (C,E,F,G), (c,a) →
G,H,A)} then the link mapping cost will increase to be Cost(E 1 v ) =
1 ∗ 2 + 8 ∗ 3 + 15 ∗ 2 = 96 . Thus, different way of link mapping in-

uces different substrate link bandwidth cost. 
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.4. Virtual network embedding problem description 

The Virtual Network Embedding for a VN request R v =
(Rid, G v , C v , B v ) refers to a mapping M from the virtual network

 

Rid 
v onto a subset of substrate network G s with respect to certain

onstraints. 

 : G v → (N 

′ 
s , P 

′ 
, R N , R E ) (8) 

here N 

′ 
s ⊂ N s , P 

′ ⊂ P s , and R N and R E denote the substrate node

nd link resources allocated to VN request R v . 

Different from the offline VN embedding algorithm which sup-

oses all VN requests are defined and known in advance, the on-

ine VN embedding algorithm processes the incoming VN requests

nline once the requests arrive without any foresights about future

N requests, and the allocated resources are released once the VN

xpires. The challenge is to find the best mapping between current

irtual network G v and the substrate graph G s so as to achieve a

etter resource utilization while not hinder future VN allocations

nd increase the acceptance ratio. 

Since the VN embedding involves of the resource allocation

oth in nodes and links, thus it can be naturally decomposed into

wo sub-problems: Virtual Node Mapping M N and Virtual Link Map-

ing M E . 

.4.1. Virtual node mapping 

Each virtual node of the same VN request R v is mapped to a

ingle distinct substrate node by a one-to-one mapping 

 N : (N 

Rid 
v , C v ) → (N 

′ Rid 
s , R N ) (9) 

here N 

′ Rid 
s ⊂ N s . The mapping should satisfy the following pri-

ary constraints, for ∀ n v , m v ∈ N v : 

 N (n v ) = M N (m v ) iff n v = m v (10) 

(n v ) ≤ �N ( M N (n v )) (11) 

.4.2. Virtual link mapping 

Each virtual link of a VN request R v is mapped to a single un-

plittable substrate path (single path routing) or a set of multiple

plittable substrate paths (multiple path routing) between the sub-

trate nodes on which the virtual nodes of that virtual link are em-

edded. 

 E : (E Rid 
v , B v ) → (P 

′ Rid , R E ) (12) 

here P 
′ Rid ⊂ P s and for ∀ p ∈ M E (e v ) it meets 

 (e v ) ≤
∑ 

p∈M E (e v ) 

�E (p) (13) 

Fig. 2 illustrates a feasible VN embedding solution for two VN

equests. 

.5. Objectives 

In this work, the virtual network embedding algorithm is im-

lemented by satisfying multiple objectives under a set of con-

traints. The ultimate objective is to compute a VN mapping so-

ution that maximizes the revenue while reducing the cost . Besides,

he VN embedding algorithm in this paper is proposed for the

nline problem, where VN requests arrive and expire/depart over

ime. 

.5.1. Maximize revenue 

This objective is to maximize the economic benefit of accept-

ng VN requests. In order to achieve this goal, the infrastructure

roviders prefer to allocate resources for more VN requests with a

igher VN request acceptance ratio. Similar to the previous works
12,13,15,16] , we define the revenue R e v of a VN request R v =
(Rid, G v , C v , B v ) as the sum of its requested resources: 

 e v (R 

Rid 
v ) = 

∑ 

n v ∈ N v 
C(n v ) + α

∑ 

e v ∈ E v 
B (e v ) (14) 

here α is a tuning parameter for substrate providers to balance

he revenues between the two substrate resources. 

.5.2. Minimize embedding cost 

In order to increase the VN request acceptance ratio and thus

n turn increase the revenue, the algorithm should minimize the

esources (especially the link bandwidth) spent on embedding a

N request, and save more resources to accept more VN requests.

ince the cost of node embedding is fixed and deterministic, thus

n our two-phase heuristic algorithm we just need to focus on

inimizing the cost of link embedding Cost(E Rid 
v ) in the second

hase of the algorithm. 

. Multiple objectives linear programming optimization model 

In this section, the virtual network embedding problem is for-

ulated as a Multiple Objectives Linear Programming (MOLP) opti-

ization problem. The goal is to find some feasible solutions which

im to optimize the two given objectives while satisfying a series

f constraints including capacity constraints, flow constraints, do-

ain constraints and some binary constraints. 

.1. MOLP model 

In order to better present the MOLP model, we first introduce

everal useful variables as below which will be involved in the

OLP problem formulation. 

• f e v u v : A flow (i.e., bandwidth) variable denoting the amount of

flow from u to v on the substrate path for the virtual link e v . 

• x n v n s : A binary variable denoting whether or not the virtual node

n v is embedded on the substrate node n s . 

• y Rid : A binary variable denoting whether or not the request

with the identifier Rid is accepted. 

Then the MOLP optimization problem can be modelled in the

ollowing form: 

Objectives: 

Maximize 
∑ 

Rid 

y Rid ∗ R e v (R 

Rid 
v ) 

Minimize 
∑ 

Rid 

∑ 

e v ∈ E Rid 
v 

∑ 

(u, v ) ∈ E s 
( f e v u v + f e v v u ) 

Constraints: 

• Capacity Constraints: 

∑ 

Rid 

∑ 

e v ∈ E Rid 
v 

( f e v u v + f e v v u ) ≤ �E (u, v ) ∀ (u, v ) ∈ E s (15) 

∑ 

n Rid 
v ∈ N v 

x 
n Rid 

v 
n s ∗ C(n 

Rid 
v ) ≤ �N (n s ) ∀ n s ∈ N s (16) 

• Flow Constraints: 
∑ 

w ∈ N s 
f 

e Rid 
v 

uw 

− f 
e Rid 

v 
wu = x 

s Rid 
v 

u B (e Rid 
v ) ∀ e Rid 

v = (s Rid 
v , t Rid 

v ) (17) 

∑ 

f 
e Rid 

v 
uw 

− f 
e Rid 

v 
wu = −x 

t Rid 
v 

u B (e Rid 
v ) ∀ e Rid 

v = (s Rid 
v , t Rid 

v ) (18) 
w ∈ N s 
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Fig. 3. An example of Blocking Island Graph based on link capacities, in which N 1 

is 40-BI, N 2 and N 3 are 30-BIs, N 4 is 20-BI, and N 5 is 10-BI. 
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• Binary Constraints: 

1 

M 

∑ 

(u, v ) ∈ E s 

∑ 

e v ∈ E Rid 
v 

( f e v u v + f e v v u ) ≤ y Rid ∀ Rid (19)

y Rid ≤
∑ 

n s ∈ N s 
x n v n s 

∀ Rid, ∀ n v ∈ N 

Rid 
v (20)

∑ 

n v ∈ N Rid 
v 

x n v n s 
≤ 1 ∀ Rid, ∀ n s ∈ N s (21)

• Domain Constraints: 

f 
e Rid 

v 
u v ≥ 0 ∀ Rid, ∀ (u, v ) ∈ E s (22)

x 
n Rid 

v 
n s ∈ { 0 , 1 } ∀ n s ∈ N s , ∀ n 

Rid 
v (23)

y Rid ∈ { 0 , 1 } ∀ Rid (24)

where the notations and statements are explained as below: 

• The objectives are to maximize the revenue of accepting VN

requests, i.e., the summation of revenue over all VN requests

with y Rid = 1 , and also to minimize the cost of embedding VN

requests, i.e., the summation of bandwidth over all edges em-

bedded with VN requests (note that it is a slight modification

of (7) ) 

• Capacity constraint (15) requires all embedded bandwidth on

any substrate edge ( u, v ) not exceed the available bandwidth

�E ( u, v ), while (16) requires all allocated CPU resources of

any substrate node n s not exceed the available CPU resources

�N ( n s ) 

• If x 
s Rid 
v 

u = 0 (or x 
t Rid 
v 

u = 0 ), meaning that the virtual node s Rid 
u (or

t Rid 
u ) is not embedded on the substrate node u , then the flow

constraint (17) (or (18) ) refers to the flow conservation. On the

other hand, if x 
s Rid 
v 

u = 1 (or x 
t Rid 
v 

u = 1 ), meaning that the virtual

node s Rid 
u (or t Rid 

u ) is embedded on the substrate node u , then

the flow constraint (17) (or (18) ) refers to the completion of

the bandwidth allocation for the VN request e Rid 
v . 

• In the binary constraint (19) , M is a sufficient large parameter

such that any number divided by M is less than 1. Thus, con-

straint (19) means whenever any virtual edge of a VN request

is embedded on any substrate path, the VN request is accepted

and then y Rid = 1 . Constraint (20) means whenever a VN re-

quest is accepted, each of its virtual nodes should be embed-

ded on certain substrate node. Constraint (21) means each vir-

tual node from the same VN request is assigned to a different

substrate node ensuring the one-to-one node mapping. 

• The domain constraint (22) indicate the permitted value range

of a valid flow variable. Constraints (23) and (24) are the most

basic form of integrity constraints, both of which are binary

variables. 

4.2. Strategies to solve MOLP problem 

Generally, there are two common solution strategies, which are

preemptive way and weighted sum method, for the optimization

problem with multiple objectives [26–32] . The key strategy of pre-

emptive optimization is to perform the optimization by consider-

ing one objective (based on priorities) at a time, and obtain an op-

timal objective value as a bound. Then use this optimized bound

value as a new constraint to optimize the second objective func-

tion. This procedure is repeated until all objectives are processed.

The final obtained objective value will be an efficient solution to

the original multiple objective model. Comparatively, the weighted
um method assigns several appropriate weights to different objec-

ives and converts the multiple objectives into one single objective

y summing up all objective functions. The final optimal solution

o the converted single objective optimization problem will be a

easible solution to the original multiple-objective problem. 

The already existing VNE works involving multiple objectives

ostly adopt the weighted sum method [13,17,33,34] by assigning

ach objective with different weight parameters. On the contrary,

he preemptive strategy is applied in our approach. We first con-

ider the objective targeting at maximizing the revenue at node

apping phase, then we optimize the second objective aiming to

ecrease the cost at link mapping phase based upon the already

apped virtual nodes. 

.3. Discussion 

Both of the two LP problems are known to be NP-hard, either

ffline or online. Thus, it is not reasonable to compute an opti-

al solution in polynomial time, even for offline case. Even the

heoretical upper or lower bounds for this general problem do not

xist. Nevertheless, we can obtain some near-optimal solutions to

pecific objectives by adopting efficient heuristic algorithms. 

. Blocking island paradigm 

As a resource abstraction model derived from Artificial Intelli-

ence, Blocking Island (BI) was firstly proposed by Christian Frei,

t al. in [35] to represent the availability of network link band-

idth. BI is defined as: A β-Blocking Island ( β-BI) for a node x is

he set of all nodes of the network that can be reached from x using

inks with at least β available resources, including x . In addition to

ink bandwidth abstraction, in this paper we extend the BI model

o abstract the available CPU capacities of nodes as well. The key

dea of BI is to abstract the original network graph into a hierarchy

ree containing available network resource information at different

evels of abstraction. Figs. 3 and 4 illustrate some BIs, for example,

 1 in Fig. 3 represents a 40-BI. 

BI holds several fundamental properties which are very useful

n resource allocation decidability. Here some of the most impor-

ant ones are listed without proof (The proof of these are given in

35] ). 

• Unicity: Each node has one unique β-BI. If S is the β-BI for

node x , then S is the β-BI for all the nodes in S . 

• Solution existence: An unallocated virtual link e v ( src, dest, βe )

can be satisfied with at least one substrate route if and only

if both the endpoints src and dest are in the same substrate-

link-bandwidth-based βe -BI. Likewise, for an allocated virtual

node n v with required βn , it can be satisfied with at least one
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Fig. 4. An example of Blocking Island Graph based on node capacities, in which N 1 

is 80-BI, N 2 is 60-BI, N 3 is 50-BI, N 4 is 40-BI, and N 5 is 30-BI. 
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Fig. 5. BIH trees for BIGs of Figs. 3 and 4 , and N 0 indicates 0-BI. 
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substrate node iff the substrate-node-CPU-based βn -BI is not

empty. 

• Route location: The links of a substrate route with β available

bandwidth are all in the β-BI of its endpoints. 

• Inclusion: If β i is larger than β j , then the β i -BI for a node is a

subset of β j -BI for the same node. 

The unique β-BI for a given node x can be obtained by a simple

reedy algorithm. Algorithm 1 depicts the construction of a link

apacity based BI whose complexity is linear in O ( L ), where L is

he number of links. The construction of node capacity based BI

s almost the same, with complexity of O ( N ), where N denotes the

umber of nodes. The obtained BIs can be used to construct the

locking Island Graph (BIG), which is a graph abstraction of the

ntire available network resources. Figs. 3 and 4 exhibit examples

f a link-based BIG and a node-based BIG, respectively. A recursive

ecomposition of BIGs in decreasing order of demands ( βs) can be

urther constructed, and the lowest level has the largest β . This

ayered BIG structure is named as Blocking Island Hierarchy (BIH).

t can be used to identify all bottlenecks, i.e. critical links (inter-

inks between different BIs), of the network. The BIH can also be

iewed as an abstraction tree when taking the father-child relation
lgorithm 1 Construct β-BI. 

1: function ConstructBI ( G = { V, E} , β) 

2: L ← {∅} � L : Result β-BI list 

3: for all v in V do 

4: if not visited( v ) then 

5: I ← Const ruct BIF romNode (G, β, v ) 
6: L ← L.Ad d (I) 

7: end if 

8: end for 

9: return L 

10: end function 

11: function ConstructBIFromNode ( G = { V, E} , β, x ) 

12: I ← { x } � I: Result β-BI 

13: S ← { links incident to x and weight ≥ β} � S: stack 

14: while S � = ∅ do 

15: l ← pop(S) 

16: e ← another endpoint of l 

17: if e / ∈ I and weight(l) ≥ β then 

18: I ← I ∪ { e } 
19: S ← S ∪ { links incident to e and weight ≥ β} 

0: end if 

21: end while 

2: return I 

3: end function 
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nto consideration. Fig. 5 shows two BIH tree examples for the BIGs

f Figs. 3 and 4 . The leaves of the BIH tree are the network nodes,

nd the other vertices denote the abstract BIs. This abstraction tree

an reflect the real-time state of the available network bandwidth. 

The BI paradigm provides an extremely efficient way to repre-

ent the availability of network resources, and greatly reduces the

earch space and computation complexity. For example, to embed

 node requiring 50 CPU capacity, the satisfaction decision can be

ade just by checking if the 50-BI is empty with complexity of

 (1) without computing and checking all the nodes’ status. For an-

ther example, when embedding a VN request we need to check

hether its virtual links with required bandwidth can be satis-

ed, the traditional way is to firstly spend lots of time in searching

he entire network space and computing the feasible routes for ev-

ry virtual link with very high exponential computation complex-

ty then to decide if this VN request can be satisfied. Compara-

ively, the BI-based approach only needs to check if the endpoints

f every virtual link are in the same corresponding β-BI with com-

utation complexity O (1) since only two hashing operations are

eeded. One may concern about the time cost in the maintenance

f BIs. However, we only need to update the BIs which are involved

n allocations or deallocations by means of splitting or merging op-

rations with complexity of O ( n ) or O ( l ), where n and l denote the

umber of involved nodes and links, respectively. Besides, accord-

ng to the experimental results the overall computation efficiency

s still greatly improved though the maintenance of BI may take

ome time. Actually, traditional VNE algorithms also should main-

ain the global knowledge of node/link states up to date. 

. Presto : BI-based online heuristic virtual network embedding 

ramework 

As aforementioned, the virtual network embedding (VNE) is an

P-hard problem and the traditional approaches suffer from a high

omplexity due to the huge searching space consisting of exponen-

ial number of nodes and routes. In response to this issue, with

he benefit of BI model, we propose an efficient BI based heuris-

ic framework, named Presto , to solve the online virtual network

mbedding problem with much lower and more manageable com-

lexity. 

.1. Overview on Presto framework 

In practice, the arrival interval of VN requests behaves ran-

omly. The VN request may arrive one after another in a certain

nterval, but it also may happen that multiple VN requests arrive

lmost at the same time. Thus, designed as an online virtual net-

ork embedding algorithm, in addition to the ability of process-

ng VN requests one by one, Presto adopts sliding window-based

pproach to batch process the multiple arriving VN requests on-

ine. This sliding window-based technique was initially used in the
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Table 1 

Summary of algorithms. 

Algorithm Description 

HNM Heuristic node mapping algorithm 

HLM Heuristic link mapping algorithm 

HVNO Heuristic virtual node ordering algorithm 

HVLO Heuristic virtual link ordering algorithm 

DHRO Dynamic heuristic VN request ordering algorithm 
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future resource allocations. 
work [13] . It evolves from the packet-level sliding window based

data transmission protocols such as Transmission Control Protocol

(TCP). The difference is that the window size in Presto is measured

in time units other than buffer size. Each arriving VN request R v is

assigned with a unique identifier Rid to be denoted as R 

Rid 
v . Presto

queues all the arrived VN requests in a sliding window with cer-

tain size, and then optimize resource allocation by processing them

together based on a priority metric (i.e. revenue, cost). The online

batch processing manner not only provides the capability of look-

ing ahead and ordering the requests in the most beneficial way,

but also enables the forward checking ability offered by BI which

helps increase the acceptance ratio. 

In order to solve the formulated MOLP problem ( Section 4 )

more efficiently and better optimize the allocation of VN requests,

Presto decomposes the VN embedding problem into two phases: 

1. Firstly, Presto applies a heuristic node mapping algorithm

(HNM) to map the virtual nodes of a VN request to a set

of most advantageous substrate nodes targeting at increas-

ing the acceptance ratio and maximizing revue. Besides, a

virtual node ordering algorithm (HVNO) is designed before

node mapping. 

2. Secondly, Presto uses a heuristic link mapping algorithm

(HLM) to compute the most beneficial routes between the

allocated substrate nodes to allocate every virtual links with

required bandwidth aiming to minimize the embedding cost.

Moreover, a virtual link ordering algorithm (HVLO) is de-

signed before link mapping. 

3. Notably, before embedding, a dynamic heuristic VN request

ordering algorithm (DHRO) should be executed to determine

the VN embedding order. 

All the involved algorithms for virtual network embedding are

summarized in Table 1 . 

6.2. Variable ordering 

As a common issue for the constraint satisfaction problem

(CSP), it cannot be guaranteed to find an assignment to satisfy all

the variables (virtual nodes, virtual links, VN requests) all the time.

How to select next variable from the set of unallocated variables

to allocate has a great impact on the overall allocation success ra-

tio, and also impacts the computation and search efficiency on the

whole. This issue exists in every step of VN embedding procedure,

including node mapping phase (the order of virtual node selection

from a certain VN request), link mapping phase (i.e. which virtual

link should be allocated first), and VN request selection (how to

sort the VN requests queued in the same window). As shown in

[36] , the common way for this kind of CSP is to use fail-first princi-

ple based technique which tries those tests in the given set of tests

that are most likely to fail: “To succeed, try first where you are most

likely to fail ”. There are also some static techniques, such as to first

select the demand with the greatest value. However, they are not

suitable for the online VN embedding problem in data center net-

works which require more efficient mechanism in a dynamic way.

Based on this observation, a set of variable ordering mechanisms
re carefully designed for virtual node ordering, virtual link order-

ng and VN request ordering. The basic intuition is to decrease the

omain of search tree and to prune the tree branches that cannot

ead to a feasible solution as early as possible when choosing a

ariable. 

.3. Node mapping algorithm 

The heuristic node mapping algorithm HNM is designed to map

ach virtual node of a VN request to the substrate nodes with suf-

cient CPU capacities. For each virtual node with required β CPU

apacity, before node mapping HNM firstly checks whether the vir-

ual node is in a β-BI or higher level BIs (referring to BI’s Inclusion

roperty) according to the solution existence property. If there is

ny virtual node of the VN request that cannot be satisfied, then

resto rejects the request for this time and postpones it to the next

indow for processing to see if any resources are released because

f some VN expires. If all virtual nodes can be satisfied with their

equired capacities based on BI checking, then HNM manages the

esource allocation by mapping virtual nodes to capacitated sub-

trate nodes. 

.3.1. Virtual node ordering 

Before embedding a certain individual virtual network request,

ts virtual nodes are needed to be sorted firstly, through a heuris-

ic ordering algorithm named HVNO, and then the requests are se-

uentially allocated. HVNO sorts the VN requests as below. 

(i) Presto prefers to choose the virtual node with β required

CPU capacities, where the β-level substrate node-based BI

contains fewest substrate nodes. It is derived from the per-

spective of limited network resources, and follows the first-

fail principle since the fewer nodes in the domain the fewer

the feasible solutions. 

(ii) If there are multiple such virtual nodes, the one with larger

required CPU capacities is given a higher priority for selec-

tion. This also abides by the fail-first law. 

(iii) Finally, Presto randomly sorts the virtual nodes that still have

the same order. 

For each virtual network G v = (N 

Rid 
v , E Rid 

v ) , Presto recursively se-

ects one virtual node n v from N v to allocate in the above order

ntil all the virtual nodes are allocated. Through sorting the order

f allocating virtual nodes, the search tree is largely pruned and

he search space is decreased, which greatly improves the compu-

ation and search efficiency. 

.3.2. Node mapping 

In order to increase the acceptance ratio while decreasing com-

utation time, HNM also selects substrate nodes with priorities for

he virtual nodes to embed. The basic principle of HNM is to pref-

rentially choose the substrate node that causes minimum BI split-

ings after allocation if the splitting cannot be avoidable. For each

irtual node, HNM selects the qualified substrate node to embed

s follows: 

(i) Choose the substrate node, within the β-BI, that causes no

splitting. This intends to avoid BI splitting where BI split-

ting may result in more future request allocation failures

and higher computation cost of updating BIs. 

(ii) If the splitting is unavoidable then choose the substrate

node that causes fewest BI splittings. 

(iii) If there are multiple such substrate nodes then select the

substrate node n s which has the highest available resource

�N ( n s ). The intuition behind this rule is that HNM is prone

to use less critical nodes and increase the success ratio of
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HNM finishes the node selection process as long as the output

f any of the above 3 procedures is unique, and embeds the vir-

ual node to the selected substrate node. Then HNM recursively

hooses the next unallocated virtual node to embed until all the

irtual nodes of the VN request are allocated successfully. 

HNM performs as the first step towards an efficient virtual net-

ork embedding. The key advantages of HNM are mainly revealed

n the following aspects. 

(i) Prior to VN embedding, with the benefit of BI, HNM makes

faster decisions on the acceptance of a VN request than tra-

ditional approaches. 

(ii) HNM is devoted to increasing the acceptance ratio and takes

the future allocation into consideration. 

(iii) Higher acceptance ratio induces higher revenue. This is the

first step to maximize the revenue. 

(iv) Following the minimum-splitting principle, HNM reduces

much time cost in updating the involved BIs and further in-

creases computation efficiency. 

.4. Link mapping algorithm 

After mapping the virtual nodes of a VN request, the heuris-

ic link mapping algorithm HLM is then applied to map each vir-

ual link of the VN request to the substrate path with sufficient

andwidth. Similarly, for each virtual link of the VN request, be-

ore mapping virtual links HLM also needs to check if there are

ny satisfied substrate paths between the corresponding substrate

odes which host the end virtual nodes of the virtual link. The

raditional approaches usually firstly must search the entire net-

ork space and compute the possible routes with an exponential

omplexity O (| N s | 
x ), and then to make a decision if the virtual link

an be embedded or not. Comparatively, by applying BI model HLM

ust needs to check if the two end embedded substrate nodes are

n the same β-BI, where β indicates the required bandwidth of

hat virtual link, through a simple hashing operation in O (1) time,

hich greatly improves the computation efficiency. 

.4.1. Virtual link ordering 

Similarly, in order to increase the overall acceptance ratio, we

lso propose a heuristic ordering algorithm for virtual link selec-

ions, named HVLO, which works as below. 

(i) Presto intends to first choose the virtual link where the Low-

est Common Father of its corresponding embedded end sub-

strate nodes (LCF sn ) in BIH tree is highest. The intuition

behind this rule is to first allocate the virtual link whose

mapped substrate path will pass through more critical sub-

strate links. The higher the LCF sn the more constrained the

virtual link, which complies with the fail-first principle. For

example, as shown in Figs. 3 and 5 (left), suppose there are

two virtual links l 1 and l 2 need to be allocated, the end vir-

tual nodes of l 1 are embedded on substrate nodes A and H

while the end virtual notes of l 2 are mapped on substrates

nodes G and F , then the virtual link l 2 will be preferred to

be firstly allocated because the LCF sn of ( A, H ) and ( G, F ) are

N 2 and N 4 , respectively, and N 4 is the highest one. 

(ii) If there are multiple virtual links with the same value for the

first step, then Presto gives a higher priority to the virtual

link whose LCF sn contains fewer nodes. This also follows the

fail-first principle. 

(iii) In case there are still more than one virtual links with the

same order, then Presto prioritizes the one with higher re-

quired link capacities. 

(iv) Finally, Presto randomly sort the virtual links that still have
the same order. F  
For each virtual network G v = (N 

Rid 
v , E Rid 

v ) , after embedding the

irtual nodes Presto then recursively maps virtual links e v from E v 
o a substrate path in the above order until all the virtual links are

mbedded. Likewise, the resulted pruned search tree after sorting

reatly decreases the search domain and increases the computa-

ion efficiency. 

.4.2. Link mapping 

If all the virtual links can be satisfied after BI-based acceptance

hecking, then HLM performs the link mapping to assign a best

oute for each virtual link in the prearranged order. However, the

omain is too large and the route set is too time-consuming to be

omputed. In order to further improve the search efficiency and

elect the best route as fast as possible, we need to generate the

outes in the most advantageous order as well. Thus, for each vir-

ual link, several rules are carefully regulated for route selection: 

(i) As few critical links (inter-links between different BIs) as

possible should be involved in the substrate route. This not

only aims to reduce the failure ratio of future allocations,

but also to decrease the computation cost of updating BIs. 

(ii) The route prefer to choose the shortest path which targets

at minimizing the link mapping cost Cost(E Rid 
v ) . 

(iii) The allocation for current virtual link should impact the fu-

ture allocation as little as possible. 

(iv) The computation cost should be as low as possible. 

In accordance with these directive guidelines, HLM strictly fol-

ows the procedures as below, for each virtual link: 

(i) Firstly, search the lowest level (with the largest β) BI in

which both the two corresponding end substrate nodes

(which host the end virtual nodes of the virtual link) are

clustered, and generate a set of candidate substrate routes.

For example, in the link-based BIG or BIH as shown in

Figs. 3 and 5 , the lowest level BI for end nodes G and A is

N 2 , and for A and C it is N 4 . This fashion is prone to use as

less critical bottleneck links (inter-BI links) as possible thus

increasing the success ratio of future allocations. Eventually,

this can help achieve a tighter network with better link uti-

lization. This step follows the first and the third rules. 

(ii) Secondly, choose the shortest substrate path from the can-

didate routes. This step aims to decrease the reserved link

bandwidth cost, which follows the second rule. 

(iii) If there are still multiple such substrate paths, choose the

one that causes minimum BI splitting after resource alloca-

tion. This step is in line with fourth rule. 

(iv) Finally, if there are still more than one such paths, we ran-

domly choose one from the candidate routes. 

HLM achieves almost the same benefits as demonstrated in

NM, such as faster decisions, better acceptance ratio, and higher

omputation efficiency. Moreover, HLM regards the embedding cost

s its primary optimization objective, and prefers to choose a sub-

trate path with lowest cost. 

.5. Sliding window-based batch processing 

If the arrival interval of VN requests is short or even multiple

N requests arrive simultaneously, then the fashion of batch pro-

essing will be more favorable and beneficial. Therefore, Presto ap-

lies a sliding window based method to batch process several re-

uests together at the end of the window time. In this way, when

apping VN requests Presto can lookahead within the sliding win-

ow and order the requests in a most beneficial way for further

esource allocation, which can achieve a higher acceptance ratio.

urthermore, Presto can also do forward checking with the help of
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Algorithm 2 The online VN embedding algorithm Presto. 

1: procedure Presto Algorithm 

2: T win = Window_size 

3: W nd next ← {} 
4: loop 

5: T 0 ← Current time 

6: W nd cur ← W nd next 

7: W nd next ← {} 
8: repeat 

9: W nd cur ← New arriving R v = (Rid, G v , C v , B v ) 

10: T cur ← Current time 

11: until T cur − T 0 ≥ T win � The current window expires 

12: Apply DHRO algorithm to sort W nd cur 

13: for all R 

Rid 
v ∈ W nd cur do 

14: if T s (R 

Rid 
v ) expires before T cur then 

15: Reject R 

Rid 
v 

16: else 

17: Sort virtual nodes using HVNO algorithm 

18: HNM embeds virtual nodes with forward checking 

19: if HNM fails to embed R 

Rid 
v then 

20: Add R 

Rid 
v to W nd next 

21: end if 

22: Sort virtual links using HVLO algorithm 

23: HLM embeds virtual links with forward checking 

24: if HLM fails to embed R 

Rid 
v then 

25: Add R 

Rid 
v to W nd next 

26: end if 

27: end if 

28: end for 

29: end loop 

30: end procedure 
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BI model when allocating one VN request. Each VN request is as-

sociated with an additional field named as maximum standing time

T s , which indicates the maximum time a VN request can wait in

the queue for processing. 

6.5.1. VN request ordering 

Before embedding, the coming VN requests within the same

window period need to be ordered in a proper way. Thus, we pro-

pose a dynamic heuristic approach, denoted as DHRO, to determine

the order of selecting VN requests taking the optimization objec-

tives into consideration. The principle of DHRO to sort the VN re-

quests within a sliding window is: (i) to give higher priorities to

the VN requests gaining higher revenues and (ii) to increase the

acceptance ratio as much as possible, both of which can contribute

to increasing the overall revenue. 

Based on these careful observations, the criterion of VN request

ordering in the priority queue is proposed as below: 

(i) Firstly, the VN request R 

Rid 
v with the highest revenue

R e v (R 

Rid 
v ) is given the highest priority and will be firstly

considered. This aims to maximize the economic revenue. 

(ii) Secondly, if there are multiple VN requests with the same

revenue, Presto assigns a higher priority to the one that re-

quests higher link bandwidth resources 
∑ 

e v ∈ E v 
B (e v ) since the

network bandwidth is a more constrained resource [37] than

CPU resources in data centers. This follows the first-fail prin-

ciple. 

(iii) Thirdly, if there are still more than one requests with the

same order, then the VN request, whose maximum stand-

ing time T s is minimum, is preferentially selected. Conse-

quently, this rule favors more urgent requests and decreases

the overall allocation failure ratio. 

(iv) Otherwise, keep the current sequence unchanged. 

The dynamic heuristic approach DHRO sorts the VN requests in

the most beneficial order, which can help make better embedding

decisions. DHRO not only can increase the overall revenue, but also

can increase the acceptance ratio. 

6.5.2. Batch processing with lookahead 

Different from individual VN embedding at its arrival, Presto

segments time into consecutive window-based time units, and all

the coming VN requests within the same window time will be pro-

cessed together at the end of the window. In this way, Presto is en-

abled with lookahead abilities which can take the future requests

within the same window into consideration while making embed-

ding decisions for current request, which can help make a better

decision increasing the overall acceptance ratio. The working pro-

cedure of Presto is as below: 

(i) At the end of each window period, DHRO algorithm is ap-

plied to sort the arrived VN requests within the window. 

(ii) After sorting, Presto processes the requests in order. For each

VN request whose maximum standing time T s does not ex-

pire, it is recursively processed as below: 

– Firstly, HVNO algorithm is applied to sort the virtual

nodes of the virtual network. 

– Then, HNM algorithm is used to embed the sorted virtual

nodes onto substrate nodes in order. 

– Afterwards, HVLO algorithm is adopted to sort the virtual

links of the virtual network. 

– Finally, HLM algorithm is utilized to map the virtual links

onto substrate paths in the prearranged order. 

(iii) Place the unsuccessful embedded VN requests to the next

window, and repeat the procedure from step (i). 

The last step means that if in case any VN request cannot be

satisfied with required resources currently, then it will be deferred
o be processed in the next window period expecting that some al-

eady allocated VNs depart and release enough resources if it is not

xpired yet. The whole working procedure of Presto is presented in

lgorithm 2 . 

.5.3. Forward checking 

In addition to the lookahead ability, with the benefit of BI

aradigm Presto is also enabled with the capacity of forward check-

ng in both node mapping phase and link mapping phase. Tak-

ng advantage of BI’s solution existence property, we know at any

oint in the search if the substrate network is still possible to al-

ocate a demand (virtual node or virtual link) just by checking if

he BI at the level of its required capacity in O (1) time with one

ashing operation, without having to compute solutions. Therefore,

fter allocating a virtual node or virtual link, Presto executes for-

ard checking to examine the satisfaction of all unallocated vir-

ual nodes or virtual links of the current virtual network. If there

xists any one demand (virtual node or virtual link) that cannot

e satisfied, another allocation solution must be tried for the cur-

ent virtual node or virtual link. The capacity of forward checking

nsures Presto with a better embedding decision and higher accep-

ance ratio. 

. Evaluation 

In order to evaluate the performance of Presto , we implemented

 Presto prototype by extending our DCNSim simulator [38] with

ome accompanying Python scripts. We firstly give an overview on

he simulation environment. Then we demonstrate the evaluation

esults of Presto with respect to some performance metrics includ-

ng acceptance ratio, gained revenue, embedding cost and compu-

ation efficiency. 
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Fig. 6. The average revenue under different VN arrival rates. 

Fig. 7. The average revenue with different values of tuning parameter α. 
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.1. Evaluation settings 

.1.1. Substrate network 

In the experiment, we use SprintNet [39,40] topology as the

ubstrate network topology. The substrate resources (CPU and link

andwidth) were uniformly distributed between 50 and 150. 

.1.2. Virtual network 

The virtual network topologies were randomly generated fol-

owing similar setups in previous work [12,13,15,16] , where the

umber of virtual nodes follows a uniform distribution between

 and 10, and each pair of virtual nodes are randomly connected

ith probability 0.5. The requested CPU capacity was uniformly

istributed between 0 and 30, and the bandwidth is between 0

nd 50; The arrival rate of VN requests (the number of coming

N requests per window period) was determined by the Poisson

rocess varying from 4 to 10 VN requests per window. The maxi-

um standing time T s of a VN request conforms to an exponential

istribution between 1 and 5 window time on average, while the

uration of a VN request conforms to an exponential distribution

ith 10 time windows on average. One window time was primar-

ly defined as 100 time units. 

.1.3. Compared algorithm 

It is difficult to compare our algorithm with other proposed al-

orithms due to different problem formulation and different objec-

ives with different strategies (e.g. online/offline, admission control,

ne/two stages). For the sake of fairness, the compared algorithms

re two-staged and uncoordinated algorithms. Consequently, we

odified four existing algorithms fitting in our model to facilitate

omparisons. The first algorithm we compared with is the base-

ine algorithm of the work [16] , denoted as VNE-Yu, which uses

reedy node mapping algorithm with k -shortest path link mapping

lgorithm only considering the unsplittable flow problem. Another

ompared algorithm is [17] , denoted as VNE-SP, which employs

reedy node mapping algorithm with shortest path link mapping

lgorithm without reconfiguration. The third compared algorithm

s named RW-MaxMatch proposed in [12] . This is also a two-staged

lgorithm, which firstly maps the virtual nodes and then embeds

he virtual links by finding shortest paths with unsplittable paths.

oreover, we also implemented a modified version of [18] , de-

oted as vnmFlib, to facilitate comparisons, where it allows mul-

iple VN requests with dynamic arriving rates, and disables path

plitting, with β= 90, ε= 10. 

.2. Evaluation results 

.2.1. Average revenue over time 

The gained revenue varies under different conditions (e.g. VN

equest arrival rate, the value of tuning parameter α defined in

q. 14 ). In this simulation, we use the average gained revenue over

ime (i.e. lim 

T →∞ 

∑ T 
t=0 R e v (R v (t)) 

T ) to evaluate the overall average rev- 

nue. 

Fig. 6 shows the gained average revenue over time under dif-

erent Poisson distribution means E ( rate ) of VN arrival rates. The

uning α is set to be 0.5 as default. The evaluation result re-

eals that higher VN arrival rate yields higher revenue in the long

un. Besides, Presto achieves more revenues on average than VNE-

u, RW-MaxMatch and VNE-SP algorithms where the increment

anges from 6.21% to 19.64%. Comparatively, the evaluation results

hown in Fig. 7 present the gained average revenues with differ-

nt weights α to the revenue induced by bandwidth �B ( e v ). The

ean of arrival rate is fixed to be six requests per time window as

efault. It can be seen that higher α results in higher revenue on

he whole, where from another respective the substrate bandwidth
esource is more scarce than CPU resources during the VN embed-

ings. As well Presto still achieves a better performance than other

wo comparison algorithms for different values of α. 

.2.2. Average embedding cost 

As aforementioned in Section 3 , the CPU cost is deterministic

nd remains the same after VN embeddings, while the bandwidth

ost stays uncertain and depends on the way of VN embedding.

herefore, in this experiment we use the average bandwidth cost

o evaluate the embedding cost. Fig. 8 exhibits the induced band-

idth costs of VN embeddings under different VN arrival rates

ith a fixed α= 0.5. The result shows that higher VN arrival rate

an help reduce the embedding cost, where a higher VN arrival

ate means more VN requests can be processed together which

an help make a better embedding decision leading to less embed-

ing cost and higher revenue. Benefit from virtual link/node order-

ng/selection strategies proposed in HNM and HLM, Presto causes

ess embedding cost than the compared algorithms as shown in

ig. 8 , which in turn increases the acceptance ratio ( Fig. 9 ) and

verall revenue ( Figs. 6 and 7 ). 

.2.3. Acceptance ratio 

From a certain perspective, the acceptance ratio, gained rev-

nue and embedding cost are interrelated with each other. A lower

mbedding cost may lead to a higher acceptance ratio, which in

urn increases the overall revenue. The evaluation results shown in

ig. 9 further prove the derivation. As can be seen, Presto achieves

% ∼ 7%, 10% ∼ 15% and 20% ∼ 25% higher acceptance ratios than
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Fig. 8. The average bandwidth cost. 

Fig. 9. The overall acceptance ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The performance of computation efficiency. 

8

 

e  

d  

k  

m  

w  

D  

i  

g  

d  

o  

V  

e  

s  

w  

w  

b  

l  

t  

p  

p

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RW-MaxMatch, VNE-Yu and VNE-SP on the whole, respectively,

reckoning in the failed VN requests due to expiration. 

7.2.4. Computation efficiency 

Another big advantage of our framework Presto lies in its com-

putation efficiency. Generally, the traditional algorithms have a bad

exponential time complexity due to the huge searching space re-

sulting in high computation complexity. Comparatively, in Presto ,

with the advantage of BI model, the heuristic node/link selection

algorithms together with the variable ordering mechanism are pur-

posefully designed to guide the resource allocation and search, and

greatly improves the computation efficiency by reducing the search

space. 

In order to better demonstrate the computation efficiency of

Presto and compare with other algorithms namely VNE-Yu, vnm-

Flib, and VNE-SP, we offline run 500 instances of VN embeddings

and calculate the computation time spent on completing all alloca-

tions. We assume the substrate resources (i.e. CPU and bandwidth)

are unlimited so as to guarantee the 100% allocation. Fig. 10 gives

the simulation results, which reveal that Presto is around 1.5 times

faster than vnmFlib and two times faster than both VNE-Yu and

VNE-SP on average. Approximately 45% allocations can be com-

pleted within one second and 100% in 2.47 s using Presto , while

vnmFlib, VNE-Yu and VNE-SP only complete 33.1%, 14.8% and 12.7%

within one second, respectively, and cost 3.6 s, 5.2 s and 5.7 s to

finish 100% allocations, respectively. This definitely proves the high

computation efficiency of Presto . 
. Conclusion and future work 

This paper aims to achieve an efficient online virtual network

mbedding algorithm in virtualized cloud data centers. In order to

eal with the computationally intractable VNE problem, which is

nown as NP-hard, we formulated it as an MOLP problem with

ultiple practical objectives and designed an efficient VNE frame-

ork Presto consisting of a series of heuristic algorithms such as

HRO, HVNO, HVLO, HNM and HLM. With the benefit of Block-

ng Island paradigm derived from an AI model, Presto achieves a

ood performance in various aspects including revenue, embed-

ing cost, acceptance ratio and computation efficiency. To the best

f our knowledge, we are the first to apply BI model to deal with

NE problem. The extensive simulation results have witnessed the

ffectiveness of Presto adopting BI model. After all, there are still

ome open issues. For example, what the performance of Presto

ill be if path splitting and migration is allowed? How will the

indow size affect the acceptance ratio, overall revenue and em-

edding cost? How’s Presto’s performance if coordinated node and

ink mapping approach is applied? These issues are left for our fu-

ure work. Besides, in future work more sophisticated recently pro-

osed VNE algorithms will be implemented to conduct more com-

rehensive analysis and comparisons with our algorithm. 
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