
An Efficient Framework for Online Virtual Network
Embedding in Virtualized Cloud Data Centers

Ting Wang�, Bo Qin�, Mounir Hamdi�‡
�Hong Kong University of Science and Technology, ‡Hamad Bin Khalifa University

{twangah, bqin, hamdi}@cse.ust.hk

Abstract—Embedding multiple virtual networks (VNs) onto
a shared substrate by allocating substrate resources to virtual
nodes and virtual links of VN requests under a collection of
constrains is known to be an NP-hard problem even for the offline
VN embedding. To deal with this issue, this paper formulates
the VN embedding problem as a multiple objective linear pro-
gramming optimization program, and solves it in a preemptive
strategy by decomposing the problem into node mapping and link
mapping phases. Furthermore, based on an AI model, named
Blocking Island, we propose an efficient online heuristic VN
embedding framework called Presto. Presto operates with quite
low computation complexity and greatly reduces the search space,
which far outperforms other candidates. The goal of Presto is to
maximize the economic revenue of infrastructure providers while
minimizing the embedding cost. The extensive simulation results
further prove the feasibility and good performance of Presto.

I. INTRODUCTION

As highly multiplexed shared environments, cloud data
centers are equipped with a large number of physical servers
and virtual machines (VMs) hosted in servers to simultane-
ously offer multiple tenants with on-demand use of computing
resources in a pay-as-you-go manner [1]. How to efficiently
share the physical network resources among multiple tenants
that have diversified network topologies with different network
characteristics is a key concern. With respect to this issue,
network virtualization has emerged as an efficient technology
for resource sharing, where multiple heterogeneous network
architectures are allowed to coexist on a shared substrate
[2][3][4]. Upon on the virtualized shared data centers, the
infrastructure providers then make best effort to utilize the
substrate resources to serve the users that request customized
services with required resources (such as CPU capacities,
network bandwidth, etc.) running over different user self-
defined network topologies, which are also known as virtual
networks (VNs). Each virtual network consists of a set of
virtual nodes interconnected through a set of virtual links with
required capacities. The allocation of substrate resources to
virtual networks is called virtual network embedding (VNE).
Each virtual node is mapped onto a substrate node, while each
virtual link is mapped onto a substrate path connecting the
corresponding substrate nodes under a series of constraints.
The main objective of solving VNE problem is to make

efficient use of substrate resources through dynamic and
effective VN mapping algorithms. VNE has been presented as
a very challenging resource allocation problem that has been
addressed in many research studies [5][6][7][8][9][10]. In fact,
the VNE problem is NP-hard [6][11][8][9], even in the offline
case. Even when all the virtual nodes are embedded, to embed
the virtual links is still NP-hard [8]. Naturally, the online case
of VNE problem would be more intractable.
In response to this issue, this paper proposes an efficient

online VNE algorithm, named Presto, based on an Artificial

Intelligence resource abstraction model called Blocking Island.
Presto decomposes the VNE problem into two separate phases:
virtual node mapping and virtual link mapping. In each phase,
with the help of BI model, Presto ranks and embeds the virtual
nodes or virtual links in a most advantageous order aiming
to maximize the acceptance ratio. All the VN requests are
also sorted according to some specific metrics, which targets
at maximizing the economic revenues and minimizing the
embedding cost. In addition, the proposed sliding window
based batch processing approach enables Presto with the abil-
ity of lookahead and forward checking when processing the
dynamically arriving VN requests. Moreover, with the benefit
of BI paradigm, the search space is significantly decreased, and
accordingly, the computation efficiency is greatly improved.
The rest of the paper is organized as follows. First we

briefly review the related works in Section II. Then Section
III demonstrates the VN mapping model and problem formula-
tion. The Presto framework is designed in Section IV followed
by evaluations in Section V. Section VI concludes this paper.

II. RELATED WORK AND MOTIVATION

In order to deal with the computationally intractable VNE
problem, most of the proposals resort to heuristic algorithms
aiming to find some feasible solutions other than optimal
ones. Generally, the existing works can be classified into two
categories: offline algorithms and online algorithms.
The offline algorithms process based on the assumption

that all VN requests are defined and known in advance.
The work of [7] studied the offline problem, but they only
considered the single VN embedding in specific backbone-
star topologies and assumed the substrate resources are unlim-
ited with only bandwidth constraints. Comparatively, I.Houidi
[12] proposed a distributed VNE approach by assuming the
substrate resources are unlimited. However, this distributed
approach needs a number of signalling messages exchanged
between the substrate nodes asynchronously, which increases
time delay and signalling network overload. In these offline
methods, all VN requests can be processed together, which
may achieve better results than online methods which do
not have any global view and knowledge about the future
allocations. However, to know all VN requests in advance is
not practical in real world.
The online algorithms study the on-demand VNE prob-

lem, where algorithms dynamically compute a feasible set
of substrate nodes and links to embed the virtual nodes and
links upon the arrival of a VN request. Yu [9] advocated
an effective online approach, where they simplified the VNE
problem by applying two specific strategies, path splitting and
path migration, with admission control. In this work, a virtual
link is allowed to be mapped to multiple substrate paths for

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

978-1-4673-9501-4/15/$31.00 ©2015 IEEE 159

A

H
G

B

D

C

E
F

30
41

21

16

12

15

21

33

36

22

25

19

12

d

b

a

c

e

f

g

h

a

b

c

d

e
f

g

h

12

8

15

10

5 14

8

12

15

1515

10

10

10

10

10

39

42

50

62

80

55

49

66

Fig. 1. An example of mapping VN requests onto a shared substrate network.

splittable flows and path migration is used to periodically re-
optimize the utilization of substrate resources. Comparatively,
the paper [5] solved the VNE problem by applying the PageR-
ank algorithm, where both substrate nodes and virtual nodes
are ranked based on some metrics and then the virtual network
is embedded based on these ranks. Their goal is to increase
the acceptance ratio of online VN requests and as well as the
overall revenue. The work [6] formulated the VNE problem
as a mixed integer programming problem through substrate
network augmentation by adding a set of node constraints like
geographical locations. Then the formulated MIX problem is
relaxed to a linear program and solved using deterministic and
randomized rounding techniques. Another online embedding
algorithm [11] is designed by reducing the VNE problem to
the well known Subgraph Isomorphism Detection problem,
where it maps nodes and links during the same stage.
Besides of the embedding cost and revenues, the compu-

tation efficiency is also a very important factor, especially in
data centers. However, known as a NP-hard problem, the VNE
suffers from intractable computation complexity with huge
search domain. Although researchers proposed many heuristic
algorithms to improve computation efficiency at the cost of
sacrificing the optimality of results, the computation is still
not efficient enough. To deal with this, we propose a BI-based
heuristic which greatly increases the computation efficiency
and decreases the search domain. Moreover, it also saves much
time in determining the acceptance of a VN request.

III. VN MAPPING MODEL AND PROBLEM FORMULATION

A. Substrate Network Model
The substrate network can be modelled as a weighted

undirected graph Gs = (Ns, Es), where Ns and Es is the set
of substrate nodes and links, respectively. For each substrate
node ns ∈ Ns, C(ns) denotes the available CPU capacity
of node ns. Each substrate link es(i, j) ∈ Es between two
substrate nodes i and j is associated with a bandwidth capacity
B(es), which denotes the amount of available bandwidth. The
set of all substrate paths is denoted by Ps and the available
bandwidth of a substrate path p ∈ Ps is represented by B(p).
Fig. 1 illustrates an example of substrate network graph.

B. Virtual Network Model
Likewise, the virtual network also can be represented by a

weighted undirected graph Gv=(Nv, Ev), where Nv and Ev

indicate the set of virtual nodes and Ev virtual links. Each
nv ∈ Nv and ev ∈ Ev are associated with a minimum required
CPU capacity C(nv) and a minimum required bandwidth

capacity B(ev), respectively. The VN request is denoted by
a quadruple Rv=(Rid,Gv, Cv, Bv), where Gv=(N

Rid
v , ERid

v),
Rid is the unique identifier of a VN request, Cv=[C(n

i
v)] indi-

cates a vector of minimum required CPU capacities for virtual
nodes niv where 1 ≤ i≤|NRid

v |, and Bv=[B(ev(i, j))] repre-
sents a matrix of minimum required bandwidth capacity for
links ev(i, j)∈ERid

v between niv and n
j
v where 1≤i, j≤|NRid

v |.
C. Virtual Network Embedding Problem Description
The embedding of a VN request Rv = (Rid,Gv, Cv, Bv)

refers to a mapping M from the virtual network GRid
v onto a

subset of substrate network Gs with certain constraints.

M : Gv → (N
′
s, P

′
, RN , RE) (1)

where N
′
s ⊂ Ns, P

′ ⊂ Ps, and RN and RE denote the
substrate node and link resources allocated to VN request Rv .
The VNE problem is then decomposed into two sub-problems:
Virtual Node Mapping MN and Virtual Link Mapping ME .

1) Virtual Node Mapping: Each virtual node of the same
VN request Rv is mapped to a single distinct substrate node
by a one-to-one mapping

MN : (NRid
v , Cv)→ (N

′Rid
s , RN) (2)

where N
′Rid
s ⊂ Ns. The mapping should satisfy the following

primary constraints, for ∀ nv , mv ∈ Nv:

MN (nv) =MN (mv) iff nv = mv (3)

C(nv) ≤ ΛN (MN (nv)) (4)

where ΛN (MN (nv)) denotes the residual or available CPU
resources of substrate node MN (nv).

2) Virutal Link Mapping: Each virtual link of a VN request
Rv is mapped to a single unsplittable substrate path or a set
of multiple splittable substrate paths.

ME : (E
Rid
v , Bv)→ (P

′Rid, RE) (5)

where P
′Rid ⊂ Ps and for ∀ p ∈ ME(ev) it meets

B(ev) ≤
∑

p∈ME(ev)

ΛE(p) (6)

where ΛE(p) = min
es(i,j)∈p

ΛE(es(i, j)) and ΛE(es(i, j)) is the

residual bandwidth of the link es(i, j). Fig. 1 illustrates a
feasible VN embedding solution for two VN requests.

D. Objectives
In this work, the VNE problem is formulated as a Multi-

Objective Linear Programming (MOLP) optimization problem.
The ultimate objective is to compute a VN mapping solution
that maximizes the revenue while reducing the cost.

1) Maximize Revenue: In order to maximize the economic
benefit, the providers aim to allocate resources for more VN
requests with a higher VN request acceptance ratio. Similar
to the previous works [5][6][8][9], we define the revenue Rev
of a VN request Rv as the sum of its requested resources:

Rev(RRid
v) =

∑

nv∈Nv

C(nv) + α
∑

ev∈Ev

B(ev) (7)

where α is a tuning parameter for substrate providers to
balance the revenues between the two substrate resources.

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

160

2) Minimize Embedding Cost: In order to increase the
VN request acceptance ratio and thus in turn increase the
revenue, the algorithm should minimize the resources spent on
embedding a VN request, and save more resources to accept
more VN requests. Since the node embedding cost is fixed
and deterministic, thus we only need to minimize the cost of
link embedding cost Cost(ERid

v) in the second phase of the
algorithm. The Cost(ERid

v) is computed as

Cost(ERid
v) =

∑

ev(i,j)∈ERidv

B(ev(i, j)) ∗ |ps(niv, njv)| (8)

where virtual link ev(i, j) is mapped onto substrate path ps
and |ps(niv, njv)| denotes the number of links on path ps.

IV. Presto: BI-BASED ONLINE HEURISTIC VIRTUAL
NETWORK EMBEDDING FRAMEWORK

As aforementioned, the VNE is an NP-hard problem and
traditional approaches suffer from high complexities due to
the huge search space. In response to this issue, we propose
an efficient BI based heuristic framework, named Presto, to
solve the online VNE problem with much lower and more
manageable complexity.

A. Blocking Island Paradigm
Derived from artificial intelligence, Blocking Island (BI)

provides an efficient way to represent the availability of
network resources. A β-BI for a node x is the set of all
nodes that can be reached from x using links with at least
β available resources, including x [13]. Each node has one
unique β-BI. A virtual link request ev(src, dest, βe) can be
satisfied with at least one substrate route if and only if both
the endpoints src and dest are in the same βe-BI. Likewise,
for a virtual node nv with required βn, it can be satisfied with
at least one substrate node iff the substrate-node-CPU-based
βn-BI is not empty. Fig.2 and Fig.3 exhibit examples of a link-
based BI and a node-based BI, respectively. BIs can further to
be constructed into a tree, named Blocking Island Hierarchy
(BIH) tree. Fig.4 shows two BIH tree examples for the BIs of
Fig.2 and Fig.3. This abstraction tree can reflect the real-time
state of the available network bandwidth.
The BI paradigm greatly reduces the search space and

computation complexity. For example, when embedding a
VN request we need to check whether its virtual links with
required bandwidth can be satisfied, the traditional way is to
firstly spend plenty of time in searching the entire network
space and computing the feasible routes for every virtual link
with very high exponential computation complexity then to
decide if this VN request can be satisfied. Comparatively,
the BI-based approach only needs to check if the endpoints
of every virtual link are in the same corresponding β-BI
with computation complexity O(1) since only two hashing
operations are needed.

B. Overview on Presto Framework
Designed as an online VNE algorithm, in addition to the

ability of processing VN requests one by one, Presto also can
batch process multiple arriving VN requests online. Each arriv-
ing VN request Rv is assigned with a unique identifier Rid to
be denoted as RRid

v . Presto queues all the arrived VN requests
in a window with certain size, and then process them together
based on a priority metric (i.e. revenue, cost). The online batch

processing manner not only provides the capability of looking
ahead, but also enables the forward checking ability offered
by BI which helps increase the acceptance ratio.

Presto decomposes the VNE problem into two phases:
Firstly, Presto applies the node mapping algorithm to map
the virtual nodes of a VN request to a set of substrate nodes
targeting at increasing the acceptance ratio and maximizing
revenue. Secondly, Presto uses the link mapping algorithm to
compute the most beneficial routes to allocate every virtual
link aiming to minimize the embedding cost.

C. Variable Ordering
As a common issue for the constraint satisfaction problem,

it cannot be guaranteed to find an assignment to satisfy all the
requests all the time. How to select next variable from the set
to allocate has a great impact on the overall allocation success
ratio. The most common approach is the fail-first principle
based technique which tries those tests in the given set of tests
that are most likely to fail [14]. Based on this observation,
a set of variable (virtual link/node, VN request) ordering
mechanisms are carefully designed. The basic intuition is to
decrease the domain of search tree and to prune the tree
branches that cannot lead to a feasible solution as early as
possible when choosing a variable.

D. Node Mapping Algorithm
The heuristic node mapping algorithm, named HNM, is

designed to map each virtual node to substrate nodes.
1) Virtual Node Ordering: Before embedding a VN request,

its virtual nodes are sorted through a heuristic ordering algo-
rithm named HVNO, and then the requests are sequentially
allocated. HVNO sorts the VN requests as below.

(i) Presto prefers to choose the virtual node with required β
CPU capacities, where the β-BI contains fewest substrate
nodes. This follows the first-fail principle since the fewer
nodes in the domain the fewer the feasible solutions.

(ii) If there are multiple such virtual nodes, the one with
larger required CPU capacities is given a higher priority
for selection. This also abides by the fail-first law.

(iii) Finally, Presto randomly sorts the virtual nodes that still
have the same order.

By doing this, the search tree is largely pruned and the
search space is decreased, which greatly improves the compu-
tation and search efficiency.

2) Node Mapping: In order to increase the acceptance ratio
and decrease computation time, the targeted substrate nodes
are also selected with priorities. For each virtual node, HNM
selects the qualified substrate node to embed as follows:

(i) Choose the substrate node, within the β-BI, that causes
no splitting. This intends to avoid BI splitting where
BI splitting may result in more future request allocation
failures and higher computation cost of updating BIs.

(ii) If the splitting is unavoidable then choose the substrate
node that causes fewest BI splittings.

(iii) Finally, select the substrate node ns with the highest
available resource ΛN (ns). The intuition behind this rule
is that HNM is prone to use less critical nodes and
increase the success ratio of future resource allocations.

HNM recursively chooses the next unallocated virtual node
to embed in the above order until all virtual nodes of the
VN request are allocated successfully. The key advantages of
HNM are mainly revealed in the following aspects.

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

161

A

H
G

B

D

C

E
F

30 41

21

16
12

15

21

33
36

22

25

19

12

N1

N2

N3

N4

N5

Fig. 2. A BI based on link capacities, in
which N1 is 40-BI, N2 and N3 are 30-BIs,
N4 is 20-BI, and N5 is 10-BI.

A H

G

B

D

C

E

F

39 42

50

62

80

55

49

66

N1

N2

N3

N4

N5

Fig. 3. A BI based on node capacities, in
which N1 is 80-BI, N2 is 60-BI, N3 is 50-
BI, N4 is 40-BI, and N5 is 30-BI.

N5

N6

N4

N2 N3

D

B

N1 A

H G

C FE

0

10

20

30

40

N5

N6

N4

N3 H

A

E

N2 GB

N1 FC

D

0

30

40

50

60

80

Fig. 4. BIH trees for BIGs of Fig.2 and Fig.3, and
N0 indicates 0-BI.

(i) Using BI, HNM makes faster decisions on the acceptance
of a VN request than traditional approaches.

(ii) HNM is devoted to increasing the acceptance ratio and
takes the future allocation into consideration.

(iii) Higher acceptance ratio induces higher revenue. This is
the first step to maximize the revenue.

(iv) Following the minimum-splitting principle, HNM reduces
much time cost in updating the involved BIs.

E. Link Mapping Algorithm
After virtual node mapping, the heuristic link mapping

algorithm HLM is then applied to map each virtual link to
a substrate path.

1) Virtual Link Ordering: Similarly, aiming to increase
the overall acceptance ratio, a heuristic virtual link ordering
algorithm is proposed, named HVLO, which works as below.

(i) Presto intends to first choose the virtual link where the
Lowest Common Father (LCFsn) of its corresponding
embedded end substrate nodes in BIH tree is highest. For
example, in Fig.2 and Fig.4 (left), suppose two virtual
links l1 and l2 need to be allocated, the end nodes of
l1 and l2 are mapped to (A,H) and (G,F), respectively.
Then l2 will be firstly allocated because the LCFsn of
(A,H) and (G,F) are N2 and N4, respectively, and N4

is the highest one. The intuition behind this rule is to
first allocate the virtual link whose mapped substrate path
will pass through more critical substrate links. The higher
the LCFsn the more constrained the virtual link, which
complies with the fail-first principle.

(ii) If there are multiple choices for the first step, then Presto
prefers to choose the virtual link whose LCFsn contains
fewer nodes. This also follows the fail-first principle.

(iii) If there are still multiple such virtual links, then Presto
prioritizes the one with higher required link capacities.

(iv) Finally, Presto randomly sort the virtual links that still
have the same order.

After sorting, the resulted pruned search tree greatly de-
creases search domain and increases computation efficiency.

2) Link Mapping: If all the virtual links can be satisfied
after BI-based acceptance checking, then HLM performs link
mapping to assign a best route for each virtual link in the
prearranged order. However, the domain is too large and the
route set is too time-consuming to be computed. In order to
further improve the search efficiency and select the best route
as fast as possible, some rules are designed for route selection:
(i) Fewest critical links (inter-links between different BIs) are
involved in the route. This not only aims to reduce the failure

ratio of future allocations, but also to decrease the computation
cost of updating BIs. (ii) The route prefer to choose the
shortest path which targets at minimizing the link mapping
cost Cost(ERid

v). (iii) The allocation for current virtual link
should impact the future allocation as little as possible. (iv)
The computation cost should be as low as possible.
In accordance with these directive guidelines, HLM strictly

follows the procedures as below, for each virtual link:

(i) Firstly, search the lowest level (with the largest β) BI in
which both the two corresponding end substrate nodes are
clustered, and generate a set of candidate substrate routes.
For example, in the link-based BIs or BIH as shown in
Fig.2 and Fig.4, the lowest level BI for end nodes G and
A is N2, and for A and C it is N4. This fashion is prone
to use less critical bottleneck links (inter-BI links) thus
increasing the success ratio of future allocations. This
step follows the first and the third rules.

(ii) Secondly, choose the shortest substrate path from the
candidate routes. This step aims to decrease the reserved
link bandwidth cost, which follows the second rule.

(iii) If there are still multiple such substrate paths, choose
the one that causes minimum BI splitting after resource
allocation. This step is in line with fourth rule.

(iv) Finally, if there are still more than one such paths, we
randomly choose one from the candidate routes.

Besides the advantages as demonstrated in HNM, HLM also
regards the embedding cost as its optimization objective, and
prefers to choose a substrate path with lowest cost.

F. Sliding Window-based Batch Processing

Presto applies a sliding window based method to batch
process several requests together at the end of a window time.
In this way, when mapping VN requests Presto can lookahead
within the sliding window and order the requests in a most
beneficial way for further resource allocation, which can help
achieve a higher acceptance ratio. Furthermore, Presto can also
do forward checking with the help of BI when allocating one
VN request. Each VN request is associated with a field named
as maximum standing time Ts, which indicates the maximum
time a VN request can wait in the queue for processing.

1) VN Request Ordering: A dynamic heuristic approach,
denoted as DHRO, is proposed to determine the order of
selecting VN requests within the same window period taking
the optimization objectives into consideration. The principle of
DHRO to sort the VN requests is: (i) to give higher priorities
to the VN requests gaining higher revenues and (ii) to increase

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

162

the acceptance ratio as much as possible, both of which can
contribute to increasing the overall revenue.
Based on these careful observations, the criterion of VN

request ordering in the priority queue is proposed as below:

(i) Firstly, the VN request RRid
v with the highest revenue

Rev(RRid
v) is given the highest priority and will be firstly

considered. This aims to maximize the economic revenue.
(ii) Secondly, if there are multiple such VN requests, Presto

assigns a higher priority to the one that requests higher
link bandwidth resources since the bandwidth is a more
constrained resource [15] than CPU resources in data
centers. This follows the first-fail principle.

(iii) Thirdly, if there are still more than one requests with
the same order, then the VN request, whose maximum
standing time Ts is minimum, is preferentially selected.
Consequently, this rule favours more urgent requests.

(iv) Otherwise, keep the current sequence unchanged.

The dynamic heuristic DHRO not only can increase the
overall revenue, but also can increase the acceptance ratio.

2) Batch Processing with Lookahead: Different from indi-
vidual VN embedding at its arrival, Presto segments time into
consecutive time units, and all the coming VN requests within
the same window time will be processed together at the end
of the window. In this way, Presto is enabled with lookahead
abilities which can take the future requests within the same
window into consideration while making embedding decisions
for current request, which can help make a better decision. The
working procedure of Presto is as below:
(i) At the end of each window period, DHRO algorithm is

applied to sort the arrived VN requests within the window.
(ii) Then Presto processes the requests in order. For each

VN request whose maximum standing time Ts does not
expire, it is recursively processed as below:

– Firstly, HVNO algorithm is firstly applied to sort the
virtual nodes of the virtual network.

– Then, HNM algorithm is used to embed the sorted
virtual nodes onto substrate nodes in order.

– Afterwards, HVLO algorithm is adopted to sort the
virtual links of the virtual network.

– Finally, HLM algorithm is utilized to map the virtual
links onto substrate paths in the prearranged order.

(iii) Place the unsuccessful embedded VN requests to the next
window, and repeat the procedure from step (i).

The last step means that if in case any VN request cannot
be satisfied currently, then it will be deferred to be processed
in the next window period expecting some already allocated
VNs depart and release enough resources.

3) Forward Checking: In addition to the lookahead ability,
BI paradigm also enables Presto with the forward checking
capacity. With the help of BI paradigm, we know at any point
in the search whether the substrate network is still possible
to allocate a demand (virtual node or virtual link) just by
checking if the BI at the level of its required capacity in O(1)
time with one hashing operation, without having to compute
solutions. Therefore, after allocating a virtual node/link, Presto
executes forward checking to examine the satisfaction of all
unallocated virtual nodes or virtual links of the current virtual
network. If there exists any one demand cannot be satisfied,
another allocation solution must be tried for the current virtual
node/link. The capacity of forward checking ensures Presto
with a better embedding decision and higher acceptance ratio.

V. EVALUATION

In order to evaluate the performance of Presto, we imple-
mented a Presto prototype in Java language by extending our
DCNSim simulator [16] with some additional Python scripts.
We firstly give an overview on the simulation environment.
Then we demonstrate the evaluation results of Presto with re-
spect to some performance metrics including acceptance ratio,
gained revenue, embedding cost and computation efficiency.

A. Evaluation Settings
1) Substrate Network: In the experiment, we use SprintNet

[17] [18] topology as the substrate network topology. The
substrate resources (CPU and link bandwidth) were uniformly
distributed between 50 and 150.

2) Virtual Network: The virtual network topologies were
randomly generated following similar setups in previous work
[5][6][8][9], where the number of virtual nodes follows a
uniform distribution between 2 and 10, and each pair of
virtual nodes are randomly connected with probability 0.5. The
requested CPU capacity was uniformly distributed between 0
and 30, and the bandwidth is between 0 and 50; The arrival
rate of VN requests (the number of coming VN requests
per window period) was determined by the Poisson process
varying from 4 to 10 VN requests per window. The maximum
standing time Ts of a VN request conforms to an exponential
distribution between 1 and 5 window time. One window time
was primarily defined as 100 time units.

3) Compared Algorithm: It is difficult to compare Presto
with other algorithms due to different problem formulations
and different objectives with different strategies (e.g. on-
line/offline, admission control, one/two stages). Nevertheless,
we modified two existing algorithms fitting in our model to
facilitate comparisons. The first algorithm to compare with is
the baseline algorithm of the work [9], denoted as VNE-Yu,
which uses greedy node mapping algorithm with k-shortest
path link mapping algorithm only considering the unsplittable
flow problem. Another compared algorithm is [10], denoted as
VNE-SP, which employs greedy node mapping algorithm with
shortest path link mapping algorithm without reconfiguration.

B. Evaluation Results
1) Average Revenue Over Time: The gained revenue varies

under different conditions (e.g. VN request arrival rate, the
value of tuning parameter α defined in Equation 7). In this
simulation, we use the average gained revenue over time (i.e.

lim
T→∞

∑T
t=0 Rev(Rv(t))

T) to evaluate the overall average revenue.

Fig.5 shows the gained average revenue over time under
different Poisson distribution means E(rate) of VN arrival
rates. The tuning α is set to be 0.5 as default. The evaluation
result reveals that higher VN arrival rate yields higher revenue
in the long run. Besides, Presto achieves more revenues on
average than both VNE-Yu and VNE-SP algorithms where the
increment ranges from 6.21% to 19.64%. Comparatively, the
evaluation results shown in Fig.6 present the gained average
revenues with different weights α to the revenue induced by
bandwidth

∑
B(ev). The mean of arrival rate is fixed to be six

requests per time window as default. It can be seen that higher
α results in higher revenue on the whole, where from another
respective the substrate bandwidth resource is more scare than
CPU resources during the VN embeddings. As well Presto
still achieves a better performance than other two comparison
algorithms for different values of α.

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

163

Fig. 5. The average revenue under different VN
arrival rates.

Fig. 6. The average revenue with different
values of tuning parameter α.

Fig. 7. The average bandwidth cost.

Fig. 8. The performance of computation efficiency.

2) Average Embedding Cost: As aforementioned in Section
III, the CPU cost is deterministic and remains the same after
VN embeddings, while the bandwidth cost stays uncertain and
depends on the way of VN embedding. Therefore, in this
experiment we use the average bandwidth cost to evaluate the
embedding cost. Fig.7 exhibits the induced bandwidth costs
of VN embeddings under different VN arrival rates with a
fixed α=0.5. The result shows that higher VN arrival rate
can help reduce the embedding cost, where a higher VN
arrival rate means more VN requests can be processed together
which can help make a better embedding decision leading to
less embedding cost and higher revenue. Benefit from virtual
link/node ordering/selection strategies proposed in HNM and
HLM, Presto causes less embedding cost than the compared
algorithms as shown in Fig.7, which in turn increases the
acceptance ratio and overall revenue.

3) Computation Efficiency: Another big advantage of
Presto lies in its computation efficiency. Generally, the tra-
ditional algorithms have a bad exponential time complexity
due to the huge search space resulting in high computation
complexity. Comparatively, in Presto, with the advantage of
BI model, the heuristic request selection algorithms together
with variable ordering mechanism are purposefully designed to
guide the resource allocation and search, and greatly improves
the computation efficiency by reducing the search space.
In order to better demonstrate the computation efficiency

of Presto and compare with other two algorithms, we offline
runs 500 instances of VN embeddings and calculate the
computation time spent on completing all allocations. We
assume the substrate resources (i.e. CPU and bandwidth) are
unlimited so as to guarantee the 100% allocation. Fig.8 gives
the simulation results, which reveal that Presto is around
two times faster than both VNE-Yu and VNE-SP on average.
Approximately 45% allocations can be completed within one
second and 100% in 2.47 seconds using Presto, while VNE-

Yu and VNE-SP only complete 14.8% and 12.7% within one
second, respectively, and cost 5.2 seconds and 5.7 seconds to
finish 100% allocations, respectively. This well proves the high
computation efficiency of Presto.

VI. CONCLUSION

This paper aims to achieve an efficient online VNE al-
gorithm in virtualized cloud data centers. In order to deal
with this computationally intractable problem, we formulated
it as an MOLP problem with multiple practical objectives
and designed an efficient VNE framework Presto consisting
of a series of heuristic algorithms. With the benefit of BI
paradigm, Presto achieves a good performance in various
aspects including revenue, embedding cost, acceptance ratio
and computation efficiency. The extensive simulation results
have witnessed the effectiveness of Presto framework.

VII. ACKNOWLEDGEMENT

This paper is supported by RGC grants 612912 and 613113.

REFERENCES

[1] T. Wang, et al. Rethinking the data center networking: Architecture,
network protocols, and resource sharing. IEEE Access, 2014.

[2] Thomas Anderson, et al. Overcoming the internet impasse through
virtualization. Computer, 38(4):34–41, 2005.

[3] Md Faizul Bari, et al. Data center network virtualization: A survey.
Communications Surveys & Tutorials, IEEE, 15(2):909–928, 2013.

[4] Andreas Fischer, et al. Virtual network embedding: A survey. Commu-
nications Surveys & Tutorials, IEEE, 15(4):1888–1906, 2013.

[5] Xiang Cheng, et al. Virtual network embedding through topology-aware
node ranking. ACM SIGCOMM, 41(2):38–47, 2011.

[6] NM M. K. Chowdhury, et al. Virtual network embedding with coordi-
nated node and link mapping. In INFOCOM. IEEE, 2009.

[7] Jing Lu and Jonathan Turner. Efficient mapping of virtual networks onto
a shared substrate. Washington University in St. Louis, Tech. Rep, 2006.

[8] Muntasir Raihan Rahman, et al. Survivable virtual network embedding.
In NETWORKING 2010, pages 40–52. Springer, 2010.

[9] Minlan Yu, et al. Rethinking virtual network embedding: substrate
support for path splitting and migration. ACM SIGCOMM, 2008.

[10] Yong Zhu, et al. Algorithms for assigning substrate network resources
to virtual network components. In INFOCOM, 2006.

[11] J. L., et al. A virtual network mapping algorithm based on subgraph
isomorphism detection. In the 1st ACM workshop on VISA. ACM, 2009.

[12] Ines Houidi, et al. A distributed virtual network mapping algorithm. In
Communications, IEEE International Conference on. IEEE, 2008.

[13] Christian Frei, et al. Simplifying network management using blocking
island abstractions. Internal Note from the IMMuNe Project, April, 1997.

[14] Robert M Haralick, et al. Increasing tree search efficiency for constraint
satisfaction problems. Artificial intelligence, 14(3):263–313, 1980.

[15] Jeffrey Dean, et al. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[16] Liu Yang et al. Dcnsim: A data center network simulator. In The DCPerf,
Philadelphia, USA. IEEE, 2013.

[17] T. Wang, et al. Sprintnet: A high performance server-centric network
architecture for data centers. In IEEE ICC, pages 4005–4010, 2014.

[18] T. Wang, et al. Designing efficient high performance server-centric data
center network architecture. Computer Networks, 79:283–296, 2015.

2015 IEEE 4th International Conference on Cloud Networking (CloudNet)

164

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

